Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1995 May;69(5):2825–2830. doi: 10.1128/jvi.69.5.2825-2830.1995

Maturation of giardiavirus capsid protein involves posttranslational proteolytic processing by a cysteine protease.

D Yu 1, C C Wang 1, A L Wang 1
PMCID: PMC188977  PMID: 7707505

Abstract

The double-stranded RNA genome of giardiavirus (GLV) has only two large open reading frame (ORFs). The 100-kDa capsid polypeptide (p100) is encoded by ORF1, whereas the only other viral polypeptide, the 190-kDa GLV RNA-dependent RNA polymerase (p190), is synthesized as an ORF1-ORF2 fusion protein by a (-1) ribosomal frameshifting. Edman degradation revealed that p100 was N-terminally blocked except for 2 to 5% of it that showed free N terminus starting from amino acid residue 33 of ORF1. Studies using antiserum targeted against amino acid residues 6 to 27 indicated that this region (NT) is absent from viral p100 and p190, while pulse-labelling experiments showed that NT is present in nascent p100 synthesized in GLV-infected Giardia lamblia but removed subsequently. In contrast, this region was retained in the two viral proteins synthesized in vitro, and it was not removed upon prolonged incubation or inclusion of microsomal fraction in the in vitro translation reaction mixtures. These results suggest that endoplasmic reticulum is not involved in the protein processing and that the precursors of p100 and p190 are incapable of cleaving themselves or each other. This specific cleavage was reproduced when lysates from GLV-infected G. lamblia were added, but not those from uninfected cells. The cleavage activity was relatively insensitive to phenylmethylsulfonyl fluoride, but it was inhibitable by leupeptin or E-64, two known specific inhibitors of cysteine protease. The possible origin of this processing activity is discussed.

Full Text

The Full Text of this article is available as a PDF (279.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adam R. D. The biology of Giardia spp. Microbiol Rev. 1991 Dec;55(4):706–732. doi: 10.1128/mr.55.4.706-732.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boothroyd J. C., Wang A., Campbell D. A., Wang C. C. An unusually compact ribosomal DNA repeat in the protozoan Giardia lamblia. Nucleic Acids Res. 1987 May 26;15(10):4065–4084. doi: 10.1093/nar/15.10.4065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Choi G. H., Pawlyk D. M., Rae B., Shapira R., Nuss D. L. Molecular analysis and overexpression of the gene encoding endothiapepsin, an aspartic protease from Cryphonectria parasitica. Gene. 1993 Mar 30;125(2):135–141. doi: 10.1016/0378-1119(93)90320-3. [DOI] [PubMed] [Google Scholar]
  4. Dougherty W. G., Semler B. L. Expression of virus-encoded proteinases: functional and structural similarities with cellular enzymes. Microbiol Rev. 1993 Dec;57(4):781–822. doi: 10.1128/mr.57.4.781-822.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Georgopoulos C. P., Hendrix R. W., Casjens S. R., Kaiser A. D. Host participation in bacteriophage lambda head assembly. J Mol Biol. 1973 May 5;76(1):45–60. doi: 10.1016/0022-2836(73)90080-6. [DOI] [PubMed] [Google Scholar]
  6. Koonin E. V., Dolja V. V. Evolution and taxonomy of positive-strand RNA viruses: implications of comparative analysis of amino acid sequences. Crit Rev Biochem Mol Biol. 1993;28(5):375–430. doi: 10.3109/10409239309078440. [DOI] [PubMed] [Google Scholar]
  7. Kräusslich H. G., Wimmer E. Viral proteinases. Annu Rev Biochem. 1988;57:701–754. doi: 10.1146/annurev.bi.57.070188.003413. [DOI] [PubMed] [Google Scholar]
  8. McDonald H., Hobman T. C., Gillam S. The influence of capsid protein cleavage on the processing of E2 and E1 glycoproteins of rubella virus. Virology. 1991 Jul;183(1):52–60. doi: 10.1016/0042-6822(91)90117-t. [DOI] [PubMed] [Google Scholar]
  9. Miller R. L., Wang A. L., Wang C. C. Identification of Giardia lamblia isolates susceptible and resistant to infection by the double-stranded RNA virus. Exp Parasitol. 1988 Jun;66(1):118–123. doi: 10.1016/0014-4894(88)90056-2. [DOI] [PubMed] [Google Scholar]
  10. Miller R. L., Wang A. L., Wang C. C. Purification and characterization of the Giardia lamblia double-stranded RNA virus. Mol Biochem Parasitol. 1988 Apr;28(3):189–195. doi: 10.1016/0166-6851(88)90003-5. [DOI] [PubMed] [Google Scholar]
  11. Oroszlan S., Luftig R. B. Retroviral proteinases. Curr Top Microbiol Immunol. 1990;157:153–185. doi: 10.1007/978-3-642-75218-6_6. [DOI] [PubMed] [Google Scholar]
  12. Shapira R., Nuss D. L. Gene expression by a hypovirulence-associated virus of the chestnut blight fungus involves two papain-like protease activities. Essential residues and cleavage site requirements for p48 autoproteolysis. J Biol Chem. 1991 Oct 15;266(29):19419–19425. [PubMed] [Google Scholar]
  13. Sogin M. L., Gunderson J. H., Elwood H. J., Alonso R. A., Peattie D. A. Phylogenetic meaning of the kingdom concept: an unusual ribosomal RNA from Giardia lamblia. Science. 1989 Jan 6;243(4887):75–77. doi: 10.1126/science.2911720. [DOI] [PubMed] [Google Scholar]
  14. Strauss E. G., Strauss J. H. RNA viruses: genome structure and evolution. Curr Opin Genet Dev. 1991 Dec;1(4):485–493. doi: 10.1016/S0959-437X(05)80196-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Tillotson L., Shatkin A. J. Reovirus polypeptide sigma 3 and N-terminal myristoylation of polypeptide mu 1 are required for site-specific cleavage to mu 1C in transfected cells. J Virol. 1992 Apr;66(4):2180–2186. doi: 10.1128/jvi.66.4.2180-2186.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Wang A. L., Miller R. L., Wang C. C. Antibodies to the Giardia lamblia double-stranded RNA virus major protein can block the viral infection. Mol Biochem Parasitol. 1988 Sep;30(3):225–232. doi: 10.1016/0166-6851(88)90091-6. [DOI] [PubMed] [Google Scholar]
  17. Wang A. L., Wang C. C. Discovery of a specific double-stranded RNA virus in Giardia lamblia. Mol Biochem Parasitol. 1986 Dec;21(3):269–276. doi: 10.1016/0166-6851(86)90132-5. [DOI] [PubMed] [Google Scholar]
  18. Wang A. L., Wang C. C. Viruses of the protozoa. Annu Rev Microbiol. 1991;45:251–263. doi: 10.1146/annurev.mi.45.100191.001343. [DOI] [PubMed] [Google Scholar]
  19. Wang A. L., Yang H. M., Shen K. A., Wang C. C. Giardiavirus double-stranded RNA genome encodes a capsid polypeptide and a gag-pol-like fusion protein by a translation frameshift. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8595–8599. doi: 10.1073/pnas.90.18.8595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wickner R. B. Double-stranded and single-stranded RNA viruses of Saccharomyces cerevisiae. Annu Rev Microbiol. 1992;46:347–375. doi: 10.1146/annurev.mi.46.100192.002023. [DOI] [PubMed] [Google Scholar]
  21. de Groot R. J., Rümenapf T., Kuhn R. J., Strauss E. G., Strauss J. H. Sindbis virus RNA polymerase is degraded by the N-end rule pathway. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):8967–8971. doi: 10.1073/pnas.88.20.8967. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES