Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1995 May;69(5):3024–3032. doi: 10.1128/jvi.69.5.3024-3032.1995

Detection and intracellular localization of equine herpesvirus 1 IR1 and IR2 gene products by using monoclonal antibodies.

G B Caughman 1, J B Lewis 1, R H Smith 1, R N Harty 1, D J O'Callaghan 1
PMCID: PMC189002  PMID: 7707529

Abstract

During lytic infection, two transcripts arise from the equine herpesvirus 1 (EHV-1) immediate-early (IE) gene (IR1): a single, spliced 6.0-kb IE mRNA and a 3'-coterminal 4.4-kb early mRNA (IR2). Previous studies demonstrated that transiently expressed IR1 and IR2 gene products are potent transcriptional regulators: IR1 proteins are capable of trans activating representative EHV-1 early and late promoters, while both IR1 proteins and the IR2 product, which lacks IR1 amino acid residues 1 to 322, trans repress the IR1 promoter. In the present study, monoclonal antibodies (MAbs) against the major IE protein, IE1, were developed, characterized as to their ability to detect IR1 and IR2 products, and used to examine extracellular virions for the presence of IE1-related proteins and to define the IR1 and IR2 protein synthesis and intracellular distribution in EHV-1-infected cells. The results demonstrated that (i) anti-IE1 MAbs representing three noncompetitive epitope-binding groups reacted with multiple IE protein species, as well as with a 146-kDa early protein identified as the putative IR2 gene product; (ii) the three reactive epitopes mapped to a region spanning amino acids 323 to 552 of IR1; (iii) anti-IE1 MAbs reacted with the 144-kDa in vitro-translated IR2 product and with a transiently expressed IR2 product similar in size; (iv) small amounts of IE1 and the 146-kDa protein were associated with the nucleocapsid-tegument fraction of mature virions; (v) in immunofluorescence assays of lytically infected cells, IR1-IR2 gene products were first detectable between 1 and 2 h postinfection as discrete, punctate, intranuclear foci; (vi) as the infection progressed, the intranuclear reactivity increased and redistributed into large, intensely stained nuclear compartments which corresponded to the sites of active viral DNA synthesis; (vii) fibrillar, as well as more generalized cytoplasmic staining, first observed at about 5 h postinfection, increased throughout infection; and (viii) while viral DNA synthesis was required for the progressive intranuclear redistribution, the cytoplasmic accumulation of IR1-IR2 proteins occurred subsequent to early infection events.

Full Text

The Full Text of this article is available as a PDF (626.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen G. P., Bryans J. T. Molecular epizootiology, pathogenesis, and prophylaxis of equine herpesvirus-1 infections. Prog Vet Microbiol Immunol. 1986;2:78–144. [PubMed] [Google Scholar]
  2. Caughman G. B., Robertson A. T., Gray W. L., Sullivan D. C., O'Callaghan D. J. Characterization of equine herpesvirus type 1 immediate early proteins. Virology. 1988 Apr;163(2):563–571. doi: 10.1016/0042-6822(88)90297-8. [DOI] [PubMed] [Google Scholar]
  3. Caughman G. B., Staczek J., O'Callaghan D. J. Equine herpesvirus type 1 infected cell polypeptides: evidence for immediate early/early/late regulation of viral gene expression. Virology. 1985 Aug;145(1):49–61. doi: 10.1016/0042-6822(85)90200-4. [DOI] [PubMed] [Google Scholar]
  4. Cohen J. C., Randall C. C., O'Callaghan D. J. Transcription of equine herpesvirus type 1: evidence for classes of transcripts differing in abundance. Virology. 1975 Dec;68(2):561–565. doi: 10.1016/0042-6822(75)90299-8. [DOI] [PubMed] [Google Scholar]
  5. Cuello A. C., Priestley J. V., Milstein C. Immunocytochemistry with internally labeled monoclonal antibodies. Proc Natl Acad Sci U S A. 1982 Jan;79(2):665–669. doi: 10.1073/pnas.79.2.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gray W. L., Baumann R. P., Robertson A. T., Caughman G. B., O'Callaghan D. J., Staczek J. Regulation of equine herpesvirus type 1 gene expression: characterization of immediate early, early, and late transcription. Virology. 1987 May;158(1):79–87. doi: 10.1016/0042-6822(87)90240-6. [DOI] [PubMed] [Google Scholar]
  7. Grundy F. J., Baumann R. P., O'Callaghan D. J. DNA sequence and comparative analyses of the equine herpesvirus type 1 immediate early gene. Virology. 1989 Sep;172(1):223–236. doi: 10.1016/0042-6822(89)90124-4. [DOI] [PubMed] [Google Scholar]
  8. Harty R. N., Caughman G. B., Holden V. R., O'Callaghan D. J. Characterization of the myristylated polypeptide encoded by the UL1 gene that is conserved in the genome of defective interfering particles of equine herpesvirus 1. J Virol. 1993 Jul;67(7):4122–4132. doi: 10.1128/jvi.67.7.4122-4132.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Harty R. N., Colle C. F., Grundy F. J., O'Callaghan D. J. Mapping the termini and intron of the spliced immediate-early transcript of equine herpesvirus 1. J Virol. 1989 Dec;63(12):5101–5110. doi: 10.1128/jvi.63.12.5101-5110.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Harty R. N., O'Callaghan D. J. An early gene maps within and is 3' coterminal with the immediate-early gene of equine herpesvirus 1. J Virol. 1991 Jul;65(7):3829–3838. doi: 10.1128/jvi.65.7.3829-3838.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hopp T. P., Woods K. R. A computer program for predicting protein antigenic determinants. Mol Immunol. 1983 Apr;20(4):483–489. doi: 10.1016/0161-5890(83)90029-9. [DOI] [PubMed] [Google Scholar]
  12. Huang H. L., Szabocsik J. M., Randall C. C., Gentry G. A. Equine abortion (herpes) virus-specific RNA. Virology. 1971 Aug;45(2):381–389. doi: 10.1016/0042-6822(71)90339-4. [DOI] [PubMed] [Google Scholar]
  13. Kinchington P. R., Hougland J. K., Arvin A. M., Ruyechan W. T., Hay J. The varicella-zoster virus immediate-early protein IE62 is a major component of virus particles. J Virol. 1992 Jan;66(1):359–366. doi: 10.1128/jvi.66.1.359-366.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Knipe D. M., Senechek D., Rice S. A., Smith J. L. Stages in the nuclear association of the herpes simplex virus transcriptional activator protein ICP4. J Virol. 1987 Feb;61(2):276–284. doi: 10.1128/jvi.61.2.276-284.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Knipe D. M., Smith J. L. A mutant herpesvirus protein leads to a block in nuclear localization of other viral proteins. Mol Cell Biol. 1986 Jul;6(7):2371–2381. doi: 10.1128/mcb.6.7.2371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  17. Lewis J. B., Thompson Y. G., Caughman G. B. Transcriptional control of the equine herpesvirus 1 immediate early gene. Virology. 1993 Dec;197(2):788–792. doi: 10.1006/viro.1993.1658. [DOI] [PubMed] [Google Scholar]
  18. McGeoch D. J., Dolan A., Donald S., Brauer D. H. Complete DNA sequence of the short repeat region in the genome of herpes simplex virus type 1. Nucleic Acids Res. 1986 Feb 25;14(4):1727–1745. doi: 10.1093/nar/14.4.1727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Perdue M. L., Kemp M. C., Randall C. C., O'Callaghan D. J. Studies of the molecular anatomy of the L-M cell strain of equine herpes virus type 1: proteins of the nucleocapsid and intact virion. Virology. 1974 May;59(1):201–216. doi: 10.1016/0042-6822(74)90216-5. [DOI] [PubMed] [Google Scholar]
  20. Purewal A. S., Smallwood A. V., Kaushal A., Adegboye D., Edington N. Identification and control of the cis-acting elements of the immediate early gene of equid herpesvirus type 1. J Gen Virol. 1992 Mar;73(Pt 3):513–519. doi: 10.1099/0022-1317-73-3-513. [DOI] [PubMed] [Google Scholar]
  21. RANDALL C. C., LAWSON L. A. Adaptation of equine abortion virus to Earle's L cells in serum-free medium with plaque formation. Proc Soc Exp Biol Med. 1962 Jul;110:487–489. doi: 10.3181/00379727-110-27558. [DOI] [PubMed] [Google Scholar]
  22. Randall R. E., Dinwoodie N. Intranuclear localization of herpes simplex virus immediate-early and delayed-early proteins: evidence that ICP 4 is associated with progeny virus DNA. J Gen Virol. 1986 Oct;67(Pt 10):2163–2177. doi: 10.1099/0022-1317-67-10-2163. [DOI] [PubMed] [Google Scholar]
  23. Robertson A. T., Caughman G. B., Gray W. L., Baumann R. P., Staczek J., O'Callaghan D. J. Analysis of the in vitro translation products of the equine herpesvirus type 1 immediate early mRNA. Virology. 1988 Oct;166(2):451–462. doi: 10.1016/0042-6822(88)90516-8. [DOI] [PubMed] [Google Scholar]
  24. Smith R. H., Caughman G. B., O'Callaghan D. J. Characterization of the regulatory functions of the equine herpesvirus 1 immediate-early gene product. J Virol. 1992 Feb;66(2):936–945. doi: 10.1128/jvi.66.2.936-945.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Smith R. H., Zhao Y., O'Callaghan D. J. The equine herpesvirus 1 (EHV-1) UL3 gene, an ICP27 homolog, is necessary for full activation of gene expression directed by an EHV-1 late promoter. J Virol. 1993 Feb;67(2):1105–1109. doi: 10.1128/jvi.67.2.1105-1109.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Smith R. H., Zhao Y., O'Callaghan D. J. The equine herpesvirus type 1 immediate-early gene product contains an acidic transcriptional activation domain. Virology. 1994 Aug 1;202(2):760–770. doi: 10.1006/viro.1994.1398. [DOI] [PubMed] [Google Scholar]
  27. Staufenbiel M., Deppert W. Preparation of nuclear matrices from cultured cells: subfractionation of nuclei in situ. J Cell Biol. 1984 May;98(5):1886–1894. doi: 10.1083/jcb.98.5.1886. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Yao F., Courtney R. J. A major transcriptional regulatory protein (ICP4) of herpes simplex virus type 1 is associated with purified virions. J Virol. 1989 Aug;63(8):3338–3344. doi: 10.1128/jvi.63.8.3338-3344.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES