Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1995 May;69(5):3049–3058. doi: 10.1128/jvi.69.5.3049-3058.1995

Control of baculovirus gp64-induced syncytium formation by membrane lipid composition.

L Chernomordik 1, E Leikina 1, M S Cho 1, J Zimmerberg 1
PMCID: PMC189005  PMID: 7707532

Abstract

We have investigated the effects of membrane lipid composition on biological membrane fusion triggered by low pH and mediated by the baculovirus envelope glycoprotein gp64. Lysolipids, either added exogenously or produced in situ by phospholipase A2 treatment of cell membranes, reversibly inhibited syncytium formation. Lysolipids also decreased the baculovirus infection rate. In contrast, oleic and arachidonic acids and monoolein promoted cell-cell fusion. Membrane lipid composition affected pH-independent processes which followed the low-pH-induced change in fusion protein conformation. Inhibition and promotion of membrane fusion by a number of lipids could not be explained by mere binding or incorporation into membranes, but rather was correlated with the effective molecular shape of exogenous lipids. Our data are consistent with the hypothesis that membrane fusion proceeds through highly bent membrane intermediates (stalks) having a net negative curvature. Consequently, inverted cone-shaped lysolipids inhibit and cone-shaped cis-unsaturated fatty acids promote stalk formation and, ultimately, membrane fusion.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alford D., Ellens H., Bentz J. Fusion of influenza virus with sialic acid-bearing target membranes. Biochemistry. 1994 Mar 1;33(8):1977–1987. doi: 10.1021/bi00174a002. [DOI] [PubMed] [Google Scholar]
  2. Aroeti B., Henis Y. I. Effects of fusion temperature on the lateral mobility of Sendai virus glycoproteins in erythrocyte membranes and on cell fusion indicate that glycoprotein mobilization is required for cell fusion. Biochemistry. 1988 Jul 26;27(15):5654–5661. doi: 10.1021/bi00415a039. [DOI] [PubMed] [Google Scholar]
  3. Blissard G. W., Rohrmann G. F. Baculovirus diversity and molecular biology. Annu Rev Entomol. 1990;35:127–155. doi: 10.1146/annurev.en.35.010190.001015. [DOI] [PubMed] [Google Scholar]
  4. Blissard G. W., Wenz J. R. Baculovirus gp64 envelope glycoprotein is sufficient to mediate pH-dependent membrane fusion. J Virol. 1992 Nov;66(11):6829–6835. doi: 10.1128/jvi.66.11.6829-6835.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Blumenthal R., Schoch C., Puri A., Clague M. J. A dissection of steps leading to viral envelope protein-mediated membrane fusion. Ann N Y Acad Sci. 1991;635:285–296. doi: 10.1111/j.1749-6632.1991.tb36499.x. [DOI] [PubMed] [Google Scholar]
  6. Carr C. M., Kim P. S. A spring-loaded mechanism for the conformational change of influenza hemagglutinin. Cell. 1993 May 21;73(4):823–832. doi: 10.1016/0092-8674(93)90260-w. [DOI] [PubMed] [Google Scholar]
  7. Chernomordik L. V., Melikyan G. B., Chizmadzhev Y. A. Biomembrane fusion: a new concept derived from model studies using two interacting planar lipid bilayers. Biochim Biophys Acta. 1987 Oct 5;906(3):309–352. doi: 10.1016/0304-4157(87)90016-5. [DOI] [PubMed] [Google Scholar]
  8. Chernomordik L. V., Vogel S. S., Sokoloff A., Onaran H. O., Leikina E. A., Zimmerberg J. Lysolipids reversibly inhibit Ca(2+)-, GTP- and pH-dependent fusion of biological membranes. FEBS Lett. 1993 Feb 22;318(1):71–76. doi: 10.1016/0014-5793(93)81330-3. [DOI] [PubMed] [Google Scholar]
  9. Conti C., Mastromarino P., Orsi N. Role of membrane phospholipids and glycolipids in cell-to-cell fusion by VSV. Comp Immunol Microbiol Infect Dis. 1991;14(4):303–313. doi: 10.1016/0147-9571(91)90136-2. [DOI] [PubMed] [Google Scholar]
  10. Creutz C. E. cis-Unsaturated fatty acids induce the fusion of chromaffin granules aggregated by synexin. J Cell Biol. 1981 Oct;91(1):247–256. doi: 10.1083/jcb.91.1.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Doms R. W., Gething M. J., Henneberry J., White J., Helenius A. Variant influenza virus hemagglutinin that induces fusion at elevated pH. J Virol. 1986 Feb;57(2):603–613. doi: 10.1128/jvi.57.2.603-613.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Doms R. W., Helenius A., White J. Membrane fusion activity of the influenza virus hemagglutinin. The low pH-induced conformational change. J Biol Chem. 1985 Mar 10;260(5):2973–2981. [PubMed] [Google Scholar]
  13. Epand R. M. Diacylglycerols, lysolecithin, or hydrocarbons markedly alter the bilayer to hexagonal phase transition temperature of phosphatidylethanolamines. Biochemistry. 1985 Dec 3;24(25):7092–7095. doi: 10.1021/bi00346a011. [DOI] [PubMed] [Google Scholar]
  14. Epand R. M., Epand R. F., Ahmed N., Chen R. Promotion of hexagonal phase formation and lipid mixing by fatty acids with varying degrees of unsaturation. Chem Phys Lipids. 1991 Jan-Feb;57(1):75–80. doi: 10.1016/0009-3084(91)90051-c. [DOI] [PubMed] [Google Scholar]
  15. Epand R. M., Epand R. F., Lancaster C. R. Modulation of the bilayer to hexagonal phase transition of phosphatidylethanolamines by acylglycerols. Biochim Biophys Acta. 1988 Nov 22;945(2):161–166. doi: 10.1016/0005-2736(88)90478-6. [DOI] [PubMed] [Google Scholar]
  16. Fujii T., Tamura A. Dynamic behaviour of amphiphilic lipids to penetrate into membrane of intact human erythrocytes and to induce change in the cell shape. Biomed Biochim Acta. 1983;42(11-12):S81–S85. [PubMed] [Google Scholar]
  17. Fujii T., Tamura A. Shape change of human erythrocytes induced by phosphatidylcholine and lysophosphatidylcholine species with various acyl chain lengths. Cell Biochem Funct. 1984 Jul;2(3):171–176. doi: 10.1002/cbf.290020311. [DOI] [PubMed] [Google Scholar]
  18. Fujii T., Tamura A., Yamane T. Trans-bilayer movement of added phosphatidylcholine and lysophosphatidylcholine species with various acyl chain lengths in plasma membrane of intact human erythrocytes. J Biochem. 1985 Nov;98(5):1221–1227. doi: 10.1093/oxfordjournals.jbchem.a135388. [DOI] [PubMed] [Google Scholar]
  19. Golan D. E., Furlong S. T., Brown C. S., Caulfield J. P. Monopalmitoylphosphatidylcholine incorporation into human erythrocyte ghost membranes causes protein and lipid immobilization and cholesterol depletion. Biochemistry. 1988 Apr 19;27(8):2661–2667. doi: 10.1021/bi00408a005. [DOI] [PubMed] [Google Scholar]
  20. Guirakhoo F., Hunt A. R., Lewis J. G., Roehrig J. T. Selection and partial characterization of dengue 2 virus mutants that induce fusion at elevated pH. Virology. 1993 May;194(1):219–223. doi: 10.1006/viro.1993.1252. [DOI] [PubMed] [Google Scholar]
  21. Gutman O., Danieli T., White J. M., Henis Y. I. Effects of exposure to low pH on the lateral mobility of influenza hemagglutinin expressed at the cell surface: correlation between mobility inhibition and inactivation. Biochemistry. 1993 Jan 12;32(1):101–106. doi: 10.1021/bi00052a014. [DOI] [PubMed] [Google Scholar]
  22. Haest C. W., Plasa G., Deuticke B. Selective removal of lipids from the outer membrane layer of human erythrocytes without hemolysis. Consequences for bilayer stability and cell shape. Biochim Biophys Acta. 1981 Dec 21;649(3):701–708. doi: 10.1016/0005-2736(81)90174-7. [DOI] [PubMed] [Google Scholar]
  23. Hoekstra D., de Boer T., Klappe K., Wilschut J. Fluorescence method for measuring the kinetics of fusion between biological membranes. Biochemistry. 1984 Nov 20;23(24):5675–5681. doi: 10.1021/bi00319a002. [DOI] [PubMed] [Google Scholar]
  24. Hohmann A. W., Faulkner P. Monoclonal antibodies to baculovirus structural proteins: determination of specificities by Western blot analysis. Virology. 1983 Mar;125(2):432–444. doi: 10.1016/0042-6822(83)90214-3. [DOI] [PubMed] [Google Scholar]
  25. Hope M. J., Cullis P. R. The role of nonbilayer lipid structures in the fusion of human erythrocytes induced by lipid fusogens. Biochim Biophys Acta. 1981 Jan 8;640(1):82–90. doi: 10.1016/0005-2736(81)90533-2. [DOI] [PubMed] [Google Scholar]
  26. Israelachvili J. N., Marcelja S., Horn R. G. Physical principles of membrane organization. Q Rev Biophys. 1980 May;13(2):121–200. doi: 10.1017/s0033583500001645. [DOI] [PubMed] [Google Scholar]
  27. Kemble G. W., Danieli T., White J. M. Lipid-anchored influenza hemagglutinin promotes hemifusion, not complete fusion. Cell. 1994 Jan 28;76(2):383–391. doi: 10.1016/0092-8674(94)90344-1. [DOI] [PubMed] [Google Scholar]
  28. Klausner R. D., Bhalla D. K., Dragsten P., Hoover R. L., Karnovsky M. J. Model for capping derived from inhibition of surface receptor capping by free fatty acids. Proc Natl Acad Sci U S A. 1980 Jan;77(1):437–441. doi: 10.1073/pnas.77.1.437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Kozlov M. M., Leikin S., Rand R. P. Bending, hydration and interstitial energies quantitatively account for the hexagonal-lamellar-hexagonal reentrant phase transition in dioleoylphosphatidylethanolamine. Biophys J. 1994 Oct;67(4):1603–1611. doi: 10.1016/S0006-3495(94)80633-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Kumar V. V., Malewicz B., Baumann W. J. Lysophosphatidylcholine stabilizes small unilamellar phosphatidylcholine vesicles. Phosphorus-31 NMR evidence for the "wedge" effect. Biophys J. 1989 Apr;55(4):789–792. doi: 10.1016/S0006-3495(89)82877-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Leikina E., Onaran H. O., Zimmerberg J. Acidic pH induces fusion of cells infected with baculovirus to form syncytia. FEBS Lett. 1992 Jun 15;304(2-3):221–224. doi: 10.1016/0014-5793(92)80623-O. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Luzzati V., Gulik-Krzywicki T., Rivas E., Reiss-Husson F., Rand R. P. X-ray study of model systems: structure of the lipid-water phases in correlation with the chemical composition of the lipids. J Gen Physiol. 1968 May 1;51(5):37–43. [PMC free article] [PubMed] [Google Scholar]
  33. Martin I., Dubois M. C., Saermark T., Epand R. M., Ruysschaert J. M. Lysophosphatidylcholine mediates the mode of insertion of the NH2-terminal SIV fusion peptide into the lipid bilayer. FEBS Lett. 1993 Nov 1;333(3):325–330. doi: 10.1016/0014-5793(93)80680-s. [DOI] [PubMed] [Google Scholar]
  34. Mayorga L. S., Colombo M. I., Lennartz M., Brown E. J., Rahman K. H., Weiss R., Lennon P. J., Stahl P. D. Inhibition of endosome fusion by phospholipase A2 (PLA2) inhibitors points to a role for PLA2 in endocytosis. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):10255–10259. doi: 10.1073/pnas.90.21.10255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Meers P., Hong K., Papahadjopoulos D. Free fatty acid enhancement of cation-induced fusion of liposomes: synergism with synexin and other promoters of vesicle aggregation. Biochemistry. 1988 Sep 6;27(18):6784–6794. doi: 10.1021/bi00418a021. [DOI] [PubMed] [Google Scholar]
  36. Melikyan G. B., Niles W. D., Cohen F. S. Influenza virus hemagglutinin-induced cell-planar bilayer fusion: quantitative dissection of fusion pore kinetics into stages. J Gen Physiol. 1993 Dec;102(6):1151–1170. doi: 10.1085/jgp.102.6.1151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Morris S. J., Sarkar D. P., White J. M., Blumenthal R. Kinetics of pH-dependent fusion between 3T3 fibroblasts expressing influenza hemagglutinin and red blood cells. Measurement by dequenching of fluorescence. J Biol Chem. 1989 Mar 5;264(7):3972–3978. [PubMed] [Google Scholar]
  38. Paiement J., Lavoie C., Gavino G. R., Gavino V. C. Modulation of GTP-dependent fusion by linoleic and arachidonic acid in derivatives of rough endoplasmic reticulum from rat liver. Biochim Biophys Acta. 1994 Mar 23;1190(2):199–212. doi: 10.1016/0005-2736(94)90075-2. [DOI] [PubMed] [Google Scholar]
  39. Sandow D., Nuhn P., Deutschmann K., Eichhorn U., Hofmann F., Klöcking R. Antivirale Wirkung von Lysolecithin-Analoga auf humanpathogene Viren. Pharmazie. 1986 Jun;41(6):404–406. [PubMed] [Google Scholar]
  40. Schwichtenhövel C., Deuticke B., Haest C. W. Alcohols produce reversible and irreversible acceleration of phospholipid flip-flop in the human erythrocyte membrane. Biochim Biophys Acta. 1992 Oct 19;1111(1):35–44. doi: 10.1016/0005-2736(92)90271-m. [DOI] [PubMed] [Google Scholar]
  41. Siegel D. P. Energetics of intermediates in membrane fusion: comparison of stalk and inverted micellar intermediate mechanisms. Biophys J. 1993 Nov;65(5):2124–2140. doi: 10.1016/S0006-3495(93)81256-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Silvius J. R., Leventis R. Spontaneous interbilayer transfer of phospholipids: dependence on acyl chain composition. Biochemistry. 1993 Dec 7;32(48):13318–13326. doi: 10.1021/bi00211a045. [DOI] [PubMed] [Google Scholar]
  43. Skehel J. J., Bayley P. M., Brown E. B., Martin S. R., Waterfield M. D., White J. M., Wilson I. A., Wiley D. C. Changes in the conformation of influenza virus hemagglutinin at the pH optimum of virus-mediated membrane fusion. Proc Natl Acad Sci U S A. 1982 Feb;79(4):968–972. doi: 10.1073/pnas.79.4.968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Stegmann T., Doms R. W., Helenius A. Protein-mediated membrane fusion. Annu Rev Biophys Biophys Chem. 1989;18:187–211. doi: 10.1146/annurev.bb.18.060189.001155. [DOI] [PubMed] [Google Scholar]
  45. Stegmann T. Influenza hemagglutinin-mediated membrane fusion does not involve inverted phase lipid intermediates. J Biol Chem. 1993 Jan 25;268(3):1716–1722. [PubMed] [Google Scholar]
  46. Stegmann T., White J. M., Helenius A. Intermediates in influenza induced membrane fusion. EMBO J. 1990 Dec;9(13):4231–4241. doi: 10.1002/j.1460-2075.1990.tb07871.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Tamura A., Morita K., Fujii T. Interaction of added amphiphilic lipids with the membrane of intact human erythrocytes to induce change in the cell shape. J Biochem. 1982 Jan;91(1):73–78. doi: 10.1093/oxfordjournals.jbchem.a133710. [DOI] [PubMed] [Google Scholar]
  48. Tate M. W., Eikenberry E. F., Turner D. C., Shyamsunder E., Gruner S. M. Nonbilayer phases of membrane lipids. Chem Phys Lipids. 1991 Mar;57(2-3):147–164. doi: 10.1016/0009-3084(91)90073-k. [DOI] [PubMed] [Google Scholar]
  49. Verheij H. M., Slotboom A. J., de Haas G. H. Structure and function of phospholipase A2. Rev Physiol Biochem Pharmacol. 1981;91:91–203. doi: 10.1007/3-540-10961-7_3. [DOI] [PubMed] [Google Scholar]
  50. Vogel S. S., Leikina E. A., Chernomordik L. V. Lysophosphatidylcholine reversibly arrests exocytosis and viral fusion at a stage between triggering and membrane merger. J Biol Chem. 1993 Dec 5;268(34):25764–25768. [PubMed] [Google Scholar]
  51. Volkman L. E., Goldsmith P. A. Mechanism of neutralization of budded Autographa californica nuclear polyhedrosis virus by a monoclonal antibody: Inhibition of entry by adsorptive endocytosis. Virology. 1985 May;143(1):185–195. doi: 10.1016/0042-6822(85)90107-2. [DOI] [PubMed] [Google Scholar]
  52. Volkman L. E., Goldsmith P. A. Resistance of the 64K protein of budded Autographa californica nuclear polyhedrosis virus to functional inactivation by proteolysis. Virology. 1988 Sep;166(1):285–289. doi: 10.1016/0042-6822(88)90176-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Volkman L. E. The 64K envelope protein of budded Autographa californica nuclear polyhedrosis virus. Curr Top Microbiol Immunol. 1986;131:103–118. doi: 10.1007/978-3-642-71589-1_6. [DOI] [PubMed] [Google Scholar]
  54. Weltzien H. U. Cytolytic and membrane-perturbing properties of lysophosphatidylcholine. Biochim Biophys Acta. 1979 Aug 20;559(2-3):259–287. doi: 10.1016/0304-4157(79)90004-2. [DOI] [PubMed] [Google Scholar]
  55. White J. M. Membrane fusion. Science. 1992 Nov 6;258(5084):917–924. doi: 10.1126/science.1439803. [DOI] [PubMed] [Google Scholar]
  56. Wilson I. A., Skehel J. J., Wiley D. C. Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 A resolution. Nature. 1981 Jan 29;289(5796):366–373. doi: 10.1038/289366a0. [DOI] [PubMed] [Google Scholar]
  57. Yeagle P. L., Smith F. T., Young J. E., Flanagan T. D. Inhibition of membrane fusion by lysophosphatidylcholine. Biochemistry. 1994 Feb 22;33(7):1820–1827. doi: 10.1021/bi00173a027. [DOI] [PubMed] [Google Scholar]
  58. Zimmerberg J., Vogel S. S., Chernomordik L. V. Mechanisms of membrane fusion. Annu Rev Biophys Biomol Struct. 1993;22:433–466. doi: 10.1146/annurev.bb.22.060193.002245. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES