Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1995 May;69(5):3156–3160. doi: 10.1128/jvi.69.5.3156-3160.1995

Membrane vesiculation function and exocytosis of wild-type and mutant matrix proteins of vesicular stomatitis virus.

P A Justice 1, W Sun 1, Y Li 1, Z Ye 1, P R Grigera 1, R R Wagner 1
PMCID: PMC189017  PMID: 7707543

Abstract

Transfection of mammalian CV1 cells with a recombinant M-gene pTM1 plasmid, driven by vaccinia virus-expressed phage T7 polymerase, resulted in the expression of matrix (M) protein, which is progressively released from the exterior surface of the transfected-cell plasma membrane. Exocytosis of M protein begins 2 to 4 h posttransfection and reaches a peak by 10 to 16 h posttransfection; dye uptake studies reveal that > 97% of cells are alive and have intact membranes at 16 h posttransfection. Density gradient centrifugation and labeling with radioactive palmitic acid revealed that the M protein is released from cells in association with lipid vesicles. Expression of M-gene deletion mutants suggests that exocytosis of M protein requires the presence of a membrane-binding site at N-terminal amino acids 1 to 50. Cells transfected with the pTM1 plasmid containing the M gene of the temperature-sensitive mutant tsO23 expressed ample quantities of the mutant M protein at permissive (31 degrees C) and restrictive (39 degrees C) temperatures, but the exocytosis of the mutant M protein occurred only at the permissive temperature. The tsO23 M gene has three site-specific mutations resulting in amino acid substitutions at residues 21, 111, and 227. Expression of wild-type and mutant M genes with mutations or revertants at each of these sites resulted in exocytosis of M protein at the nonpermissive temperature only when wild-type leucine was present at residue 111, but M-protein exocytosis was restricted (to some extent even at the permissive temperature) when mutant phenylalanine was present at residue 111. Past and present data indicate that a specific structural conformation of the M protein is responsible for the formation and budding of vesicles, a property of the M protein which probably also promotes vesicular stomatitis virus assembly and budding of virions from host cells.

Full Text

The Full Text of this article is available as a PDF (277.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blondel D., Harmison G. G., Schubert M. Role of matrix protein in cytopathogenesis of vesicular stomatitis virus. J Virol. 1990 Apr;64(4):1716–1725. doi: 10.1128/jvi.64.4.1716-1725.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bretscher M. S. Endocytosis: relation to capping and cell locomotion. Science. 1984 May 18;224(4650):681–686. doi: 10.1126/science.6719108. [DOI] [PubMed] [Google Scholar]
  3. Carroll A. R., Wagner R. R. Role of the membrane (M) protein in endogenous inhibition of in vitro transcription by vesicular stomatitis virus. J Virol. 1979 Jan;29(1):134–142. doi: 10.1128/jvi.29.1.134-142.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chong L. D., Rose J. K. Interactions of normal and mutant vesicular stomatitis virus matrix proteins with the plasma membrane and nucleocapsids. J Virol. 1994 Jan;68(1):441–447. doi: 10.1128/jvi.68.1.441-447.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chong L. D., Rose J. K. Membrane association of functional vesicular stomatitis virus matrix protein in vivo. J Virol. 1993 Jan;67(1):407–414. doi: 10.1128/jvi.67.1.407-414.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Freed E. O., Orenstein J. M., Buckler-White A. J., Martin M. A. Single amino acid changes in the human immunodeficiency virus type 1 matrix protein block virus particle production. J Virol. 1994 Aug;68(8):5311–5320. doi: 10.1128/jvi.68.8.5311-5320.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gheysen D., Jacobs E., de Foresta F., Thiriart C., Francotte M., Thines D., De Wilde M. Assembly and release of HIV-1 precursor Pr55gag virus-like particles from recombinant baculovirus-infected insect cells. Cell. 1989 Oct 6;59(1):103–112. doi: 10.1016/0092-8674(89)90873-8. [DOI] [PubMed] [Google Scholar]
  8. Grünberg J., Kruppa A., Paschen P., Kruppa J. Intracellular formation of two soluble glycoproteins in BHK cells infected with vesicular stomatitis virus serotype New Jersey. Virology. 1991 Feb;180(2):678–686. doi: 10.1016/0042-6822(91)90081-l. [DOI] [PubMed] [Google Scholar]
  9. Li Y., Luo L. Z., Wagner R. R. Transcription inhibition site on the M protein of vesicular stomatitis virus located by marker rescue of mutant tsO23(III) with M-gene expression vectors. J Virol. 1989 Jun;63(6):2841–2843. doi: 10.1128/jvi.63.6.2841-2843.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Li Y., Luo L., Schubert M., Wagner R. R., Kang C. Y. Viral liposomes released from insect cells infected with recombinant baculovirus expressing the matrix protein of vesicular stomatitis virus. J Virol. 1993 Jul;67(7):4415–4420. doi: 10.1128/jvi.67.7.4415-4420.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Morita K., Vanderoef R., Lenard J. Phenotypic revertants of temperature-sensitive M protein mutants of vesicular stomatitis virus: sequence analysis and functional characterization. J Virol. 1987 Feb;61(2):256–263. doi: 10.1128/jvi.61.2.256-263.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Moss B., Elroy-Stein O., Mizukami T., Alexander W. A., Fuerst T. R. Product review. New mammalian expression vectors. Nature. 1990 Nov 1;348(6296):91–92. doi: 10.1038/348091a0. [DOI] [PubMed] [Google Scholar]
  13. Newcomb W. W., Brown J. C. Role of the vesicular stomatitis virus matrix protein in maintaining the viral nucleocapsid in the condensed form found in native virions. J Virol. 1981 Jul;39(1):295–299. doi: 10.1128/jvi.39.1.295-299.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Schnitzer T. J., Lodish H. F. Noninfectious vesicular stomatitis virus particles deficient in the viral nucleocapsid. J Virol. 1979 Feb;29(2):443–447. doi: 10.1128/jvi.29.2.443-447.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Smith A. J., Cho M. I., Hammarskjöld M. L., Rekosh D. Human immunodeficiency virus type 1 Pr55gag and Pr160gag-pol expressed from a simian virus 40 late replacement vector are efficiently processed and assembled into viruslike particles. J Virol. 1990 Jun;64(6):2743–2750. doi: 10.1128/jvi.64.6.2743-2750.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sun W., Huang L., Wagner R. R. Common distribution of antigenic determinants and complementation activity on matrix proteins of two vesicular stomatitis virus serotypes. J Gen Virol. 1994 Apr;75(Pt 4):937–943. doi: 10.1099/0022-1317-75-4-937. [DOI] [PubMed] [Google Scholar]
  17. Suryanarayana K., Baczko K., ter Meulen V., Wagner R. R. Transcription inhibition and other properties of matrix proteins expressed by M genes cloned from measles viruses and diseased human brain tissue. J Virol. 1994 Mar;68(3):1532–1543. doi: 10.1128/jvi.68.3.1532-1543.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Weldon R. A., Jr, Wills J. W. Characterization of a small (25-kilodalton) derivative of the Rous sarcoma virus Gag protein competent for particle release. J Virol. 1993 Sep;67(9):5550–5561. doi: 10.1128/jvi.67.9.5550-5561.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ye Z., Sun W., Suryanarayana K., Justice P., Robinson D., Wagner R. R. Membrane-binding domains and cytopathogenesis of the matrix protein of vesicular stomatitis virus. J Virol. 1994 Nov;68(11):7386–7396. doi: 10.1128/jvi.68.11.7386-7396.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES