Abstract
Several features make Mengo virus an excellent candidate for use as a vaccine vector. The virus has a wide host range, including rodents, pigs, monkeys, and most likely humans, and expresses its genome exclusively in the cytoplasm of the infected cell. Stable attenuated strains exist which are deleted for part of the 5' noncoding region of the genome. Here we report an attenuated Mengo virus recombinant, vLCMG4, that encodes an immunodominant cytotoxic T-lymphocyte epitope of the lymphocytic choriomeningitis virus (LCMV) nucleo-protein. vLCMG4 induced protective immunity against lethal LCMV infection after a single, low-dose immunization in BALB/c mice and elicited an LCMV-specific CD8+ cytotoxic T lymphocyte response. This demonstrates the potential of recombinant Mengo virus vaccines to confer protection against infectious diseases by the induction of cellular immune responses.
Full Text
The Full Text of this article is available as a PDF (172.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alexander L., Lu H. H., Wimmer E. Polioviruses containing picornavirus type 1 and/or type 2 internal ribosomal entry site elements: genetic hybrids and the expression of a foreign gene. Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1406–1410. doi: 10.1073/pnas.91.4.1406. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Altmeyer R., Escriou N., Girard M., Palmenberg A., van der Werf S. Attenuated Mengo virus as a vector for immunogenic human immunodeficiency virus type 1 glycoprotein 120. Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):9775–9779. doi: 10.1073/pnas.91.21.9775. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Andino R., Silvera D., Suggett S. D., Achacoso P. L., Miller C. J., Baltimore D., Feinberg M. B. Engineering poliovirus as a vaccine vector for the expression of diverse antigens. Science. 1994 Sep 2;265(5177):1448–1451. doi: 10.1126/science.8073288. [DOI] [PubMed] [Google Scholar]
- Burke K. L., Dunn G., Ferguson M., Minor P. D., Almond J. W. Antigen chimaeras of poliovirus as potential new vaccines. Nature. 1988 Mar 3;332(6159):81–82. doi: 10.1038/332081a0. [DOI] [PubMed] [Google Scholar]
- Castrucci M. R., Hou S., Doherty P. C., Kawaoka Y. Protection against lethal lymphocytic choriomeningitis virus (LCMV) infection by immunization of mice with an influenza virus containing an LCMV epitope recognized by cytotoxic T lymphocytes. J Virol. 1994 Jun;68(6):3486–3490. doi: 10.1128/jvi.68.6.3486-3490.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cooper D. A., Tindall B., Wilson E. J., Imrie A. A., Penny R. Characterization of T lymphocyte responses during primary infection with human immunodeficiency virus. J Infect Dis. 1988 May;157(5):889–896. doi: 10.1093/infdis/157.5.889. [DOI] [PubMed] [Google Scholar]
- Dedieu J. F., Ronco J., van der Werf S., Hogle J. M., Henin Y., Girard M. Poliovirus chimeras expressing sequences from the principal neutralization domain of human immunodeficiency virus type 1. J Virol. 1992 May;66(5):3161–3167. doi: 10.1128/jvi.66.5.3161-3167.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duke G. M., Osorio J. E., Palmenberg A. C. Attenuation of Mengo virus through genetic engineering of the 5' noncoding poly(C) tract. Nature. 1990 Feb 1;343(6257):474–476. doi: 10.1038/343474a0. [DOI] [PubMed] [Google Scholar]
- Duke G. M., Palmenberg A. C. Cloning and synthesis of infectious cardiovirus RNAs containing short, discrete poly(C) tracts. J Virol. 1989 Apr;63(4):1822–1826. doi: 10.1128/jvi.63.4.1822-1826.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Girard M., Martin A., van der Werf S. Potential use of poliovirus as a vector. Biologicals. 1993 Dec;21(4):371–377. doi: 10.1006/biol.1993.1098. [DOI] [PubMed] [Google Scholar]
- Graham F. L., Prevec L. Adenovirus-based expression vectors and recombinant vaccines. Biotechnology. 1992;20:363–390. doi: 10.1016/b978-0-7506-9265-6.50022-1. [DOI] [PubMed] [Google Scholar]
- Helwig F. C., Schmidt C. H. A FILTER-PASSING AGENT PRODUCING INTERSTITIAL MYOCARDITIS IN ANTHROPOID APES AND SMALL ANIMALS. Science. 1945 Jul 13;102(2637):31–33. doi: 10.1126/science.102.2637.31. [DOI] [PubMed] [Google Scholar]
- Hubbard G. B., Soike K. F., Butler T. M., Carey K. D., Davis H., Butcher W. I., Gauntt C. J. An encephalomyocarditis virus epizootic in a baboon colony. Lab Anim Sci. 1992 Jun;42(3):233–239. [PubMed] [Google Scholar]
- Koup R. A., Safrit J. T., Cao Y., Andrews C. A., McLeod G., Borkowsky W., Farthing C., Ho D. D. Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome. J Virol. 1994 Jul;68(7):4650–4655. doi: 10.1128/jvi.68.7.4650-4655.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McDermott M. R., Graham F. L., Hanke T., Johnson D. C. Protection of mice against lethal challenge with herpes simplex virus by vaccination with an adenovirus vector expressing HSV glycoprotein B. Virology. 1989 Mar;169(1):244–247. doi: 10.1016/0042-6822(89)90064-0. [DOI] [PubMed] [Google Scholar]
- Oldstone M. B., Tishon A., Geckeler R., Lewicki H., Whitton J. L. A common antiviral cytotoxic T-lymphocyte epitope for diverse major histocompatibility complex haplotypes: implications for vaccination. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2752–2755. doi: 10.1073/pnas.89.7.2752. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Palmenberg A. C. Proteolytic processing of picornaviral polyprotein. Annu Rev Microbiol. 1990;44:603–623. doi: 10.1146/annurev.mi.44.100190.003131. [DOI] [PubMed] [Google Scholar]
- Sarmiento M., Glasebrook A. L., Fitch F. W. IgG or IgM monoclonal antibodies reactive with different determinants on the molecular complex bearing Lyt 2 antigen block T cell-mediated cytolysis in the absence of complement. J Immunol. 1980 Dec;125(6):2665–2672. [PubMed] [Google Scholar]
- Smith A. D., Resnick D. A., Zhang A., Geisler S. C., Arnold E., Arnold G. F. Use of random systematic mutagenesis to generate viable human rhinovirus 14 chimeras displaying human immunodeficiency virus type 1 V3 loop sequences. J Virol. 1994 Jan;68(1):575–579. doi: 10.1128/jvi.68.1.575-579.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tabi Z., Lynch F., Ceredig R., Allan J. E., Doherty P. C. Virus-specific memory T cells are Pgp-1+ and can be selectively activated with phorbol ester and calcium ionophore. Cell Immunol. 1988 May;113(2):268–277. doi: 10.1016/0008-8749(88)90026-3. [DOI] [PubMed] [Google Scholar]
- Taylor J., Weinberg R., Tartaglia J., Richardson C., Alkhatib G., Briedis D., Appel M., Norton E., Paoletti E. Nonreplicating viral vectors as potential vaccines: recombinant canarypox virus expressing measles virus fusion (F) and hemagglutinin (HA) glycoproteins. Virology. 1992 Mar;187(1):321–328. doi: 10.1016/0042-6822(92)90321-f. [DOI] [PubMed] [Google Scholar]
- Tesh R. B. The prevalence of encephalomyocarditis virus neutralizing antibodies among various human populations. Am J Trop Med Hyg. 1978 Jan;27(1 Pt 1):144–149. doi: 10.4269/ajtmh.1978.27.144. [DOI] [PubMed] [Google Scholar]
- Veckenstedt A. Pathogenicity of mengo virus to mice. I. Virological studies. Acta Virol. 1974 Nov;18(6):501–507. [PubMed] [Google Scholar]
- Whitton J. L., Sheng N., Oldstone M. B., McKee T. A. A "string-of-beads" vaccine, comprising linked minigenes, confers protection from lethal-dose virus challenge. J Virol. 1993 Jan;67(1):348–352. doi: 10.1128/jvi.67.1.348-352.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whitton J. L., Tishon A., Lewicki H., Gebhard J., Cook T., Salvato M., Joly E., Oldstone M. B. Molecular analyses of a five-amino-acid cytotoxic T-lymphocyte (CTL) epitope: an immunodominant region which induces nonreciprocal CTL cross-reactivity. J Virol. 1989 Oct;63(10):4303–4310. doi: 10.1128/jvi.63.10.4303-4310.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zinkernagel R. M., Doherty P. C. Characteristics of the interaction in vitro between cytotoxic thymus-derived lymphocytes and target monolayers infected with lymphocytic choriomeningitis virus. Scand J Immunol. 1974;3(3):287–294. doi: 10.1111/j.1365-3083.1974.tb01259.x. [DOI] [PubMed] [Google Scholar]