Abstract
The pattern of chromosomal aberrations and their significance in prostate cancer are poorly understood. We studied 23 prostate cancer and 10 benign prostatic hyperplasia (BPH) specimens by fluorescence in situ hybridization (FISH) using pericentromeric repeat-specific probes for 10 different chromosomes. The aims of the study were: 1) to compare the sensitivity of FISH and DNA flow cytometry in aneuploidy detection, 2) to determine which chromosome copy number changes are most common, and 3) which probe combinations would be most effective in aneuploidy diagnosis. Disaggregated tumor cells from formalin-fixed, paraffin-embedded tissues were pretreated with our newly developed method based on hot glycerol solution to improve probe penetration. All BPH specimens were diploid by DNA flow cytometry and showed no numerical chromosome aberrations by FISH. In prostate cancer, flow cytometry showed abnormal DNA content in 35% of cases, whereas 74% were abnormal by FISH. Aberrant copy number of chromosomes 8 (48% of cases), X (43% of cases), and 7 (39% of cases) were most common. Ninety-four percent of all aneuploid cases would have been detected with these three probes alone. Simple chromosome losses were uncommon but in DNA tetraploid tumors relative losses (trisomy or disomy) of several chromosomes were often found, suggesting progression of prostate cancer through tetraploidization followed by losses of selected chromosomes. In conclusion, our results indicate that FISH using three selected chromosome-specific probes is two to three times more sensitive than flow cytometric DNA content analysis in aneuploidy detection.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arps S., Rodewald A., Schmalenberger B., Carl P., Bressel M., Kastendieck H. Cytogenetic survey of 32 cancers of the prostate. Cancer Genet Cytogenet. 1993 Apr;66(2):93–99. doi: 10.1016/0165-4608(93)90234-d. [DOI] [PubMed] [Google Scholar]
- Bova G. S., Carter B. S., Bussemakers M. J., Emi M., Fujiwara Y., Kyprianou N., Jacobs S. C., Robinson J. C., Epstein J. I., Walsh P. C. Homozygous deletion and frequent allelic loss of chromosome 8p22 loci in human prostate cancer. Cancer Res. 1993 Sep 1;53(17):3869–3873. [PubMed] [Google Scholar]
- Breitkreuz T., Romanakis K., Lutz S., Seitz G., Bonkhoff H., Unteregger G., Zwergel T., Zang K. D., Wullich B. Genotypic characterization of prostatic carcinomas: a combined cytogenetic, flow cytometry, and in situ DNA hybridization study. Cancer Res. 1993 Sep 1;53(17):4035–4040. [PubMed] [Google Scholar]
- Brothman A. R., Patel A. M., Peehl D. M., Schellhammer P. F. Analysis of prostatic tumor cultures using fluorescence in-situ hybridization (FISH). Cancer Genet Cytogenet. 1992 Sep;62(2):180–185. doi: 10.1016/0165-4608(92)90259-b. [DOI] [PubMed] [Google Scholar]
- Brothman A. R., Peehl D. M., Patel A. M., MacDonald G. R., McNeal J. E., Ladaga L. E., Schellhammer P. F. Cytogenetic evaluation of 20 cultured primary prostatic tumors. Cancer Genet Cytogenet. 1991 Aug;55(1):79–84. doi: 10.1016/0165-4608(91)90238-p. [DOI] [PubMed] [Google Scholar]
- Brothman A. R., Peehl D. M., Patel A. M., McNeal J. E. Frequency and pattern of karyotypic abnormalities in human prostate cancer. Cancer Res. 1990 Jun 15;50(12):3795–3803. [PubMed] [Google Scholar]
- Cajulis R. S., Frias-Hidvegi D. Detection of numerical chromosomal abnormalities in malignant cells in fine needle aspirates by fluorescence in situ hybridization of interphase cell nuclei with chromosome-specific probes. Acta Cytol. 1993 May-Jun;37(3):391–396. [PubMed] [Google Scholar]
- Casalone R., Portentoso P., Granata P., Minelli E., Righi R., Meroni E., Pozzi E., Chiaravalli A. M. Chromosome changes in benign prostatic hyperplasia and their significance in the origin of prostatic carcinoma. Cancer Genet Cytogenet. 1993 Jul 15;68(2):126–130. doi: 10.1016/0165-4608(93)90008-a. [DOI] [PubMed] [Google Scholar]
- Devilee P., Thierry R. F., Kievits T., Kolluri R., Hopman A. H., Willard H. F., Pearson P. L., Cornelisse C. J. Detection of chromosome aneuploidy in interphase nuclei from human primary breast tumors using chromosome-specific repetitive DNA probes. Cancer Res. 1988 Oct 15;48(20):5825–5830. [PubMed] [Google Scholar]
- Elfving P., Cigudosa J. C., Lundgren R., Limon J., Mandahl N., Kristoffersson U., Heim S., Mitelman F. Trisomy 7, trisomy 10, and loss of the Y chromosome in short-term cultures of normal kidney tissue. Cytogenet Cell Genet. 1990;53(2-3):123–125. doi: 10.1159/000132910. [DOI] [PubMed] [Google Scholar]
- Frierson H. F., Jr Flow cytometric analysis of ploidy in solid neoplasms: comparison of fresh tissues with formalin-fixed paraffin-embedded specimens. Hum Pathol. 1988 Mar;19(3):290–294. doi: 10.1016/s0046-8177(88)80521-5. [DOI] [PubMed] [Google Scholar]
- Gittes R. F. Carcinoma of the prostate. N Engl J Med. 1991 Jan 24;324(4):236–245. doi: 10.1056/NEJM199101243240406. [DOI] [PubMed] [Google Scholar]
- Heiden T., Wang N., Tribukait B. An improved Hedley method for preparation of paraffin-embedded tissues for flow cytometric analysis of ploidy and S-phase. Cytometry. 1991;12(7):614–621. doi: 10.1002/cyto.990120705. [DOI] [PubMed] [Google Scholar]
- Henke R. P., Krüger E., Ayhan N., Hübner D., Hammerer P. Numerical chromosomal aberrations in prostate cancer: correlation with morphology and cell kinetics. Virchows Arch A Pathol Anat Histopathol. 1993;422(1):61–66. doi: 10.1007/BF01605134. [DOI] [PubMed] [Google Scholar]
- Hopman A. H., Moesker O., Smeets A. W., Pauwels R. P., Vooijs G. P., Ramaekers F. C. Numerical chromosome 1, 7, 9, and 11 aberrations in bladder cancer detected by in situ hybridization. Cancer Res. 1991 Jan 15;51(2):644–651. [PubMed] [Google Scholar]
- Hopman A. H., Ramaekers F. C., Raap A. K., Beck J. L., Devilee P., van der Ploeg M., Vooijs G. P. In situ hybridization as a tool to study numerical chromosome aberrations in solid bladder tumors. Histochemistry. 1988;89(4):307–316. doi: 10.1007/BF00500631. [DOI] [PubMed] [Google Scholar]
- Hyytinen E., Visakorpi T., Kallioniemi A., Kallioniemi O. P., Isola J. J. Improved technique for analysis of formalin-fixed, paraffin-embedded tumors by fluorescence in situ hybridization. Cytometry. 1994 Jun 1;16(2):93–99. doi: 10.1002/cyto.990160202. [DOI] [PubMed] [Google Scholar]
- Kallioniemi O. P., Visakorpi T., Holli K., Heikkinen A., Isola J., Koivula T. Improved prognostic impact of S-phase values from paraffin-embedded breast and prostate carcinomas after correcting for nuclear slicing. Cytometry. 1991;12(5):413–421. doi: 10.1002/cyto.990120506. [DOI] [PubMed] [Google Scholar]
- Lundgren R., Mandahl N., Heim S., Limon J., Henrikson H., Mitelman F. Cytogenetic analysis of 57 primary prostatic adenocarcinomas. Genes Chromosomes Cancer. 1992 Jan;4(1):16–24. doi: 10.1002/gcc.2870040103. [DOI] [PubMed] [Google Scholar]
- Macoska J. A., Micale M. A., Sakr W. A., Benson P. D., Wolman S. R. Extensive genetic alterations in prostate cancer revealed by dual PCR and FISH analysis. Genes Chromosomes Cancer. 1993 Oct;8(2):88–97. doi: 10.1002/gcc.2870080205. [DOI] [PubMed] [Google Scholar]
- Micale M. A., Mohamed A., Sakr W., Powell I. J., Wolman S. R. Cytogenetics of primary prostatic adenocarcinoma. Clonality and chromosome instability. Cancer Genet Cytogenet. 1992 Jul 15;61(2):165–173. doi: 10.1016/0165-4608(92)90082-j. [DOI] [PubMed] [Google Scholar]
- Micale M. A., Sanford J. S., Powell I. J., Sakr W. A., Wolman S. R. Defining the extent and nature of cytogenetic events in prostatic adenocarcinoma: paraffin FISH vs. metaphase analysis. Cancer Genet Cytogenet. 1993 Aug;69(1):7–12. doi: 10.1016/0165-4608(93)90103-s. [DOI] [PubMed] [Google Scholar]
- Nederlof P. M., van der Flier S., Wiegant J., Raap A. K., Tanke H. J., Ploem J. S., van der Ploeg M. Multiple fluorescence in situ hybridization. Cytometry. 1990;11(1):126–131. doi: 10.1002/cyto.990110115. [DOI] [PubMed] [Google Scholar]
- Persons D. L., Gibney D. J., Katzmann J. A., Lieber M. M., Farrow G. M., Jenkins R. B. Use of fluorescent in situ hybridization for deoxyribonucleic acid ploidy analysis of prostatic adenocarcinoma. J Urol. 1993 Jul;150(1):120–125. doi: 10.1016/s0022-5347(17)35412-5. [DOI] [PubMed] [Google Scholar]
- Pinkel D., Straume T., Gray J. W. Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc Natl Acad Sci U S A. 1986 May;83(9):2934–2938. doi: 10.1073/pnas.83.9.2934. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sandberg A. A. Chromosomal abnormalities and related events in prostate cancer. Hum Pathol. 1992 Apr;23(4):368–380. doi: 10.1016/0046-8177(92)90083-f. [DOI] [PubMed] [Google Scholar]
- Shackney S. E., Smith C. A., Miller B. W., Burholt D. R., Murtha K., Giles H. R., Ketterer D. M., Pollice A. A. Model for the genetic evolution of human solid tumors. Cancer Res. 1989 Jun 15;49(12):3344–3354. [PubMed] [Google Scholar]
- Visakorpi T., Kallioniemi O. P., Koivula T., Isola J. New prognostic factors in prostatic carcinoma. Eur Urol. 1993;24(4):438–449. doi: 10.1159/000474347. [DOI] [PubMed] [Google Scholar]
- Waldman F. M., Carroll P. R., Kerschmann R., Cohen M. B., Field F. G., Mayall B. H. Centromeric copy number of chromosome 7 is strongly correlated with tumor grade and labeling index in human bladder cancer. Cancer Res. 1991 Jul 15;51(14):3807–3813. [PubMed] [Google Scholar]