Abstract
We analyzed the roles of the individual measles virus (MV) surface glycoproteins in mediating functional and structural interactions with human CD46, the primary MV receptor. On one cell population, recombinant vaccinia virus vectors were used to produce the MV hemagglutinin (H) and fusion (F) glycoproteins. As fusion partner cells, various cell types were examined, without or with human CD46 (endogenous or recombinant vaccinia virus encoded). Fusion between the two cell populations was monitored by a quantitative reporter gene activation assay and by syncytium formation. MV glycoproteins promoted fusion with primate cells but not with nonprimate cells; recombinant CD46 rendered nonprimate cells competent for MV glycoprotein-mediated fusion. Markedly different fusion specificity was observed for another morbillivirus, canine distemper virus (CDV): recombinant CDV glycoproteins promoted fusion with primate and nonprimate cells independently of CD46. Fusion by the recombinant MV and CDV glycoproteins required coexpression of H plus F in either homologous or heterologous combinations. To assess the role of H versus F in determining the CD46 dependence of MV fusion, we examined the fusion specificities of cells producing heterologous glycoprotein combinations. The specificity of HMV plus FCDV paralleled that observed for the homologous MV glycoproteins: fusion occurred with primate cells but not with nonprimate cells unless they produced recombinant CD46. By contrast, the specificity of HCDV plus FMV paralleled that for the homologous CDV glycoproteins: fusion occurred with either primate or nonprimate cells with no dependence on CD46. Thus, for both MV and CDV, fusion specificity was determined by H. In particular, the results demonstrate a functional interaction between HMV and CD46. Flow cytometry and antibody coprecipitation studies provided a structural correlate to this functional interaction: CD46 formed a molecular complex with HMV but not with FMV or with either CDV glycoprotein. These results highlight the critical role of the H glycoprotein in determining MV specificity for CD46-positive cells.
Full Text
The Full Text of this article is available as a PDF (789.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alexander W. A., Moss B., Fuerst T. R. Regulated expression of foreign genes in vaccinia virus under the control of bacteriophage T7 RNA polymerase and the Escherichia coli lac repressor. J Virol. 1992 May;66(5):2934–2942. doi: 10.1128/jvi.66.5.2934-2942.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Alkhatib G., Briedis D. J. High-level eucaryotic in vivo expression of biologically active measles virus hemagglutinin by using an adenovirus type 5 helper-free vector system. J Virol. 1988 Aug;62(8):2718–2727. doi: 10.1128/jvi.62.8.2718-2727.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Alkhatib G., Richardson C., Shen S. H. Intracellular processing, glycosylation, and cell-surface expression of the measles virus fusion protein (F) encoded by a recombinant adenovirus. Virology. 1990 Mar;175(1):262–270. doi: 10.1016/0042-6822(90)90207-8. [DOI] [PubMed] [Google Scholar]
- Alkhatib G., Roder J., Richardson C., Briedis D., Weinberg R., Smith D., Taylor J., Paoletti E., Shen S. H. Characterization of a cleavage mutant of the measles virus fusion protein defective in syncytium formation. J Virol. 1994 Oct;68(10):6770–6774. doi: 10.1128/jvi.68.10.6770-6774.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Alkhatib G., Shen S. H., Briedis D., Richardson C., Massie B., Weinberg R., Smith D., Taylor J., Paoletti E., Roder J. Functional analysis of N-linked glycosylation mutants of the measles virus fusion protein synthesized by recombinant vaccinia virus vectors. J Virol. 1994 Mar;68(3):1522–1531. doi: 10.1128/jvi.68.3.1522-1531.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bellini W. J., McFarlin D. E., Silver G. D., Mingioli E. S., McFarland H. F. Immune reactivity of the purified hemagglutinin of measles virus. Infect Immun. 1981 Jun;32(3):1051–1057. doi: 10.1128/iai.32.3.1051-1057.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bellini W. J., Rota J. S., Rota P. A. Virology of measles virus. J Infect Dis. 1994 Nov;170 (Suppl 1):S15–S23. doi: 10.1093/infdis/170.supplement_1.s15. [DOI] [PubMed] [Google Scholar]
- Broder C. C., Earl P. L., Long D., Abedon S. T., Moss B., Doms R. W. Antigenic implications of human immunodeficiency virus type 1 envelope quaternary structure: oligomer-specific and -sensitive monoclonal antibodies. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11699–11703. doi: 10.1073/pnas.91.24.11699. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Casali P., Sissons J. G., Fujinami R. S., Oldstone M. B. Purification of measles virus glycoproteins and their integration into artificial lipid membranes. J Gen Virol. 1981 May;54(Pt 1):161–171. doi: 10.1099/0022-1317-54-1-161. [DOI] [PubMed] [Google Scholar]
- Cattaneo R., Rose J. K. Cell fusion by the envelope glycoproteins of persistent measles viruses which caused lethal human brain disease. J Virol. 1993 Mar;67(3):1493–1502. doi: 10.1128/jvi.67.3.1493-1502.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Christie M., Endresen C., Haukenes G. Purification of measles virus H polypeptide and of F polypeptide. Arch Virol. 1981;69(3-4):177–187. doi: 10.1007/BF01317333. [DOI] [PubMed] [Google Scholar]
- Drillien R., Spehner D., Kirn A., Giraudon P., Buckland R., Wild F., Lecocq J. P. Protection of mice from fatal measles encephalitis by vaccination with vaccinia virus recombinants encoding either the hemagglutinin or the fusion protein. Proc Natl Acad Sci U S A. 1988 Feb;85(4):1252–1256. doi: 10.1073/pnas.85.4.1252. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dunster L. M., Schneider-Schaulies J., Löffler S., Lankes W., Schwartz-Albiez R., Lottspeich F., ter Meulen V. Moesin: a cell membrane protein linked with susceptibility to measles virus infection. Virology. 1994 Jan;198(1):265–274. doi: 10.1006/viro.1994.1029. [DOI] [PubMed] [Google Scholar]
- Dörig R. E., Marcil A., Chopra A., Richardson C. D. The human CD46 molecule is a receptor for measles virus (Edmonston strain). Cell. 1993 Oct 22;75(2):295–305. doi: 10.1016/0092-8674(93)80071-l. [DOI] [PubMed] [Google Scholar]
- Earl P. L., Broder C. C., Long D., Lee S. A., Peterson J., Chakrabarti S., Doms R. W., Moss B. Native oligomeric human immunodeficiency virus type 1 envelope glycoprotein elicits diverse monoclonal antibody reactivities. J Virol. 1994 May;68(5):3015–3026. doi: 10.1128/jvi.68.5.3015-3026.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elroy-Stein O., Fuerst T. R., Moss B. Cap-independent translation of mRNA conferred by encephalomyocarditis virus 5' sequence improves the performance of the vaccinia virus/bacteriophage T7 hybrid expression system. Proc Natl Acad Sci U S A. 1989 Aug;86(16):6126–6130. doi: 10.1073/pnas.86.16.6126. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fuerst T. R., Niles E. G., Studier F. W., Moss B. Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8122–8126. doi: 10.1073/pnas.83.21.8122. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gerlier D., Garnier F., Forquet F. Haemagglutinin of measles virus: purification and storage with preservation of biological and immunological properties. J Gen Virol. 1988 Aug;69(Pt 8):2061–2069. doi: 10.1099/0022-1317-69-8-2061. [DOI] [PubMed] [Google Scholar]
- Gerlier D., Loveland B., Varior-Krishnan G., Thorley B., McKenzie I. F., Rabourdin-Combe C. Measles virus receptor properties are shared by several CD46 isoforms differing in extracellular regions and cytoplasmic tails. J Gen Virol. 1994 Sep;75(Pt 9):2163–2171. doi: 10.1099/0022-1317-75-9-2163. [DOI] [PubMed] [Google Scholar]
- Gerlier D., Trescol-Biémont M. C., Varior-Krishnan G., Naniche D., Fugier-Vivier I., Rabourdin-Combe C. Efficient major histocompatibility complex class II-restricted presentation of measles virus relies on hemagglutinin-mediated targeting to its cellular receptor human CD46 expressed by murine B cells. J Exp Med. 1994 Jan 1;179(1):353–358. doi: 10.1084/jem.179.1.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gheuens J., McFarlin D. E., Rammohan K. W., Bellini W. J. Idiotypes and biological activity of murine monoclonal antibodies against the hemagglutinin of measles virus. Infect Immun. 1981 Oct;34(1):200–207. doi: 10.1128/iai.34.1.200-207.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Giraudon P., Wild T. F. Correlation between epitopes on hemagglutinin of measles virus and biological activities: passive protection by monoclonal antibodies is related to their hemagglutination inhibiting activity. Virology. 1985 Jul 15;144(1):46–58. doi: 10.1016/0042-6822(85)90303-4. [DOI] [PubMed] [Google Scholar]
- Harrowe G., Sudduth-Klinger J., Payan D. G. Measles virus-substance P receptor interaction: Jurkat lymphocytes transfected with substance P receptor cDNA enhance measles virus fusion and replication. Cell Mol Neurobiol. 1992 Oct;12(5):397–409. doi: 10.1007/BF00711541. [DOI] [PubMed] [Google Scholar]
- Heminway B. R., Yu Y., Galinski M. S. Paramyxovirus mediated cell fusion requires co-expression of both the fusion and hemagglutinin-neuraminidase glycoproteins. Virus Res. 1994 Jan;31(1):1–16. doi: 10.1016/0168-1702(94)90066-3. [DOI] [PubMed] [Google Scholar]
- Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene. 1989 Apr 15;77(1):51–59. doi: 10.1016/0378-1119(89)90358-2. [DOI] [PubMed] [Google Scholar]
- Hu X. L., Ray R., Compans R. W. Functional interactions between the fusion protein and hemagglutinin-neuraminidase of human parainfluenza viruses. J Virol. 1992 Mar;66(3):1528–1534. doi: 10.1128/jvi.66.3.1528-1534.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iwata K., Seya T., Ueda S., Ariga H., Nagasawa S. Modulation of complement regulatory function and measles virus receptor function by the serine-threonine-rich domains of membrane cofactor protein (CD46). Biochem J. 1994 Nov 15;304(Pt 1):169–175. doi: 10.1042/bj3040169. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lamb R. A. Paramyxovirus fusion: a hypothesis for changes. Virology. 1993 Nov;197(1):1–11. doi: 10.1006/viro.1993.1561. [DOI] [PubMed] [Google Scholar]
- Liszewski M. K., Atkinson J. P. Membrane cofactor protein. Curr Top Microbiol Immunol. 1992;178:45–60. doi: 10.1007/978-3-642-77014-2_4. [DOI] [PubMed] [Google Scholar]
- Lublin D. M., Liszewski M. K., Post T. W., Arce M. A., Le Beau M. M., Rebentisch M. B., Lemons L. S., Seya T., Atkinson J. P. Molecular cloning and chromosomal localization of human membrane cofactor protein (MCP). Evidence for inclusion in the multigene family of complement-regulatory proteins. J Exp Med. 1988 Jul 1;168(1):181–194. doi: 10.1084/jem.168.1.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lund G. A., Salmi A. A. Purification and characterization of measles virus haemagglutinin protein G. J Gen Virol. 1981 Sep;56(Pt 1):185–193. doi: 10.1099/0022-1317-56-1-185. [DOI] [PubMed] [Google Scholar]
- Maisner A., Schneider-Schaulies J., Liszewski M. K., Atkinson J. P., Herrler G. Binding of measles virus to membrane cofactor protein (CD46): importance of disulfide bonds and N-glycans for the receptor function. J Virol. 1994 Oct;68(10):6299–6304. doi: 10.1128/jvi.68.10.6299-6304.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Malvoisin E., Wild F. Contribution of measles virus fusion protein in protective immunity: anti-F monoclonal antibodies neutralize virus infectivity and protect mice against challenge. J Virol. 1990 Oct;64(10):5160–5162. doi: 10.1128/jvi.64.10.5160-5162.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Malvoisin E., Wild T. F. Measles virus glycoproteins: studies on the structure and interaction of the haemagglutinin and fusion proteins. J Gen Virol. 1993 Nov;74(Pt 11):2365–2372. doi: 10.1099/0022-1317-74-11-2365. [DOI] [PubMed] [Google Scholar]
- Manchester M., Liszewski M. K., Atkinson J. P., Oldstone M. B. Multiple isoforms of CD46 (membrane cofactor protein) serve as receptors for measles virus. Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):2161–2165. doi: 10.1073/pnas.91.6.2161. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McFarlin D. E., Bellini W. J., Mingioli E. S., Behar T. N., Trudgett A. Monospecific antibody to the haemagglutinin of measles virus. J Gen Virol. 1980 Jun;48(Pt 2):425–429. doi: 10.1099/0022-1317-48-2-425. [DOI] [PubMed] [Google Scholar]
- Naniche D., Varior-Krishnan G., Cervoni F., Wild T. F., Rossi B., Rabourdin-Combe C., Gerlier D. Human membrane cofactor protein (CD46) acts as a cellular receptor for measles virus. J Virol. 1993 Oct;67(10):6025–6032. doi: 10.1128/jvi.67.10.6025-6032.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Naniche D., Wild T. F., Rabourdin-Combe C., Gerlier D. A monoclonal antibody recognizes a human cell surface glycoprotein involved in measles virus binding. J Gen Virol. 1992 Oct;73(Pt 10):2617–2624. doi: 10.1099/0022-1317-73-10-2617. [DOI] [PubMed] [Google Scholar]
- Naniche D., Wild T. F., Rabourdin-Combe C., Gerlier D. Measles virus haemagglutinin induces down-regulation of gp57/67, a molecule involved in virus binding. J Gen Virol. 1993 Jun;74(Pt 6):1073–1079. doi: 10.1099/0022-1317-74-6-1073. [DOI] [PubMed] [Google Scholar]
- Norrby E., Gollmar Y. Identification of measles virus-specific hemolysis-inihibiting antibodies separate from hemagglutination-inhibiting antibodies. Infect Immun. 1975 Feb;11(2):231–239. doi: 10.1128/iai.11.2.231-239.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nussbaum O., Broder C. C., Berger E. A. Fusogenic mechanisms of enveloped-virus glycoproteins analyzed by a novel recombinant vaccinia virus-based assay quantitating cell fusion-dependent reporter gene activation. J Virol. 1994 Sep;68(9):5411–5422. doi: 10.1128/jvi.68.9.5411-5422.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Orvell C., Norrby E. Immunological relationships between homologous structural polypeptides of measles and canine distemper virus. J Gen Virol. 1980 Oct;50(2):231–245. doi: 10.1099/0022-1317-50-2-231. [DOI] [PubMed] [Google Scholar]
- Orvell C., Sheshberadaran H., Norrby E. Preparation and characterization of monoclonal antibodies directed against four structural components of canine distemper virus. J Gen Virol. 1985 Mar;66(Pt 3):443–456. doi: 10.1099/0022-1317-66-3-443. [DOI] [PubMed] [Google Scholar]
- Rima B. K. The proteins of morbilliviruses. J Gen Virol. 1983 Jun;64(Pt 6):1205–1219. doi: 10.1099/0022-1317-64-6-1205. [DOI] [PubMed] [Google Scholar]
- Sato T. A., Enami M., Kohama T. Isolation of the measles virus hemagglutinin protein in a soluble form by protease digestion. J Virol. 1995 Jan;69(1):513–516. doi: 10.1128/jvi.69.1.513-516.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sergel T., McGinnes L. W., Peeples M. E., Morrison T. G. The attachment function of the Newcastle disease virus hemagglutinin-neuraminidase protein can be separated from fusion promotion by mutation. Virology. 1993 Apr;193(2):717–726. doi: 10.1006/viro.1993.1180. [DOI] [PubMed] [Google Scholar]
- Stern L. B., Greenberg M., Gershoni J. M., Rozenblatt S. The hemagglutinin envelope protein of canine distemper virus (CDV) confers cell tropism as illustrated by CDV and measles virus complementation analysis. J Virol. 1995 Mar;69(3):1661–1668. doi: 10.1128/jvi.69.3.1661-1668.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor J., Pincus S., Tartaglia J., Richardson C., Alkhatib G., Briedis D., Appel M., Norton E., Paoletti E. Vaccinia virus recombinants expressing either the measles virus fusion or hemagglutinin glycoprotein protect dogs against canine distemper virus challenge. J Virol. 1991 Aug;65(8):4263–4274. doi: 10.1128/jvi.65.8.4263-4274.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor J., Weinberg R., Tartaglia J., Richardson C., Alkhatib G., Briedis D., Appel M., Norton E., Paoletti E. Nonreplicating viral vectors as potential vaccines: recombinant canarypox virus expressing measles virus fusion (F) and hemagglutinin (HA) glycoproteins. Virology. 1992 Mar;187(1):321–328. doi: 10.1016/0042-6822(92)90321-f. [DOI] [PubMed] [Google Scholar]
- Togashi T., Orvell C., Vartdal F., Norrby E. Production of antibodies against measles virions by use of the mouse hybridoma technique. Arch Virol. 1981;67(2):149–157. doi: 10.1007/BF01318598. [DOI] [PubMed] [Google Scholar]
- Varior-Krishnan G., Trescol-Biémont M. C., Naniche D., Rabourdin-Combe C., Gerlier D. Glycosyl-phosphatidylinositol-anchored and transmembrane forms of CD46 display similar measles virus receptor properties: virus binding, fusion, and replication; down-regulation by hemagglutinin; and virus uptake and endocytosis for antigen presentation by major histocompatibility complex class II molecules. J Virol. 1994 Dec;68(12):7891–7899. doi: 10.1128/jvi.68.12.7891-7899.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vialard J., Lalumière M., Vernet T., Briedis D., Alkhatib G., Henning D., Levin D., Richardson C. Synthesis of the membrane fusion and hemagglutinin proteins of measles virus, using a novel baculovirus vector containing the beta-galactosidase gene. J Virol. 1990 Jan;64(1):37–50. doi: 10.1128/jvi.64.1.37-50.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wild T. F., Bernard A., Spehner D., Villeval D., Drillien R. Vaccination of mice against canine distemper virus-induced encephalitis with vaccinia virus recombinants encoding measles or canine distemper virus antigens. Vaccine. 1993;11(4):438–444. doi: 10.1016/0264-410x(93)90285-6. [DOI] [PubMed] [Google Scholar]
- Wild T. F., Fayolle J., Beauverger P., Buckland R. Measles virus fusion: role of the cysteine-rich region of the fusion glycoprotein. J Virol. 1994 Nov;68(11):7546–7548. doi: 10.1128/jvi.68.11.7546-7548.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wild T. F., Malvoisin E., Buckland R. Measles virus: both the haemagglutinin and fusion glycoproteins are required for fusion. J Gen Virol. 1991 Feb;72(Pt 2):439–442. doi: 10.1099/0022-1317-72-2-439. [DOI] [PubMed] [Google Scholar]
- Yoshikawa Y., Yamanouchi K., Takasu T., Rauf S., Ahmed A. Structural homology between hemagglutinin (HA) of measles virus and the active site of long neurotoxins. Virus Genes. 1991 Jan;5(1):57–67. doi: 10.1007/BF00571731. [DOI] [PubMed] [Google Scholar]
- ter Meulen V., Löffler S., Carter M. J., Stephenson J. R. Antigenic characterization of measles and SSPE virus haemagglutinin by monoclonal antibodies. J Gen Virol. 1981 Dec;57(Pt 2):357–364. doi: 10.1099/0022-1317-57-2-357. [DOI] [PubMed] [Google Scholar]