Abstract
CD4 is the predominant cell membrane protein that binds human immunodeficiency virus type 1 (HIV-1) gp120 and facilitates HIV-1 infection, but other membrane-associated molecules may be involved in determining HIV-1 cellular infection. Our prior work had suggested that CD44, the transmembrane receptor for hyaluronan, might play a role in the infection of mononuclear phagocytes with HIV-1. In the present work, we have used cells of the CD4-positive, CD44-negative human T-lymphoblast cell line Jurkat to study the role of CD44 in HIV-1 infection and tropism. Cells were transfected with cDNA for the standard (S, or hematopoietic) CD44 isoform CD44S or the epithelial isoform CD44E. The resultant lines expressed appropriate CD44S or CD44E mRNA and protein. While the parent Jurkat cells, those transfected with vector alone, and those transfected with CD44E could be productively infected with only the lymphocytotropic strain HIV-1-LAI, cells transfected with CD44S were rendered susceptible to productive infection with the monocytotropic strains HIV-1-BaL and HIV-1-ADA. Also, CD44S-transfected cells displayed higher levels of infection with HIV-1-LAI than did the other transfected Jurkat cells. The transfected cell line cells all had comparable growth rates and expressed similar levels of the membrane antigens CD4, CD7, major histocompatibility complex (MHC) class I, MHC class II, and CD11a, while levels of CD3 were slightly higher in cells transfected with vector alone and in one of the clones transfected with CD44S. Hyaluronan binding was increased in cells transfected with either CD44S or CD44E. Mouse NIH 3T3 fibroblasts transfected with human CD4, human CD44S, or both human CD4 and CD44S displayed the appropriate antigens, but they could not be productively infected with lymphocytotropic or monocytotropic strains of HIV-1. The results indicate that in human leukocytes, CD44S is an important determinant of HIV-1 productive infection and may be involved in viral cellular tropism.
Full Text
The Full Text of this article is available as a PDF (230.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alizon M., Dragic T. CD26 antigen and HIV fusion? Science. 1994 May 20;264(5162):1161–1165. doi: 10.1126/science.7909962. [DOI] [PubMed] [Google Scholar]
- Barry T. S., Jones D. M., Richter C. B., Haynes B. F. Successful engraftment of human postnatal thymus in severe combined immune deficient (SCID) mice: differential engraftment of thymic components with irradiation versus anti-asialo GM-1 immunosuppressive regimens. J Exp Med. 1991 Jan 1;173(1):167–180. doi: 10.1084/jem.173.1.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bourguignon L. Y., Kalomiris E. L., Lokeshwar V. B. Acylation of the lymphoma transmembrane glycoprotein, GP85, may be required for GP85-ankyrin interaction. J Biol Chem. 1991 Jun 25;266(18):11761–11765. [PubMed] [Google Scholar]
- Bourguignon L. Y., Lokeshwar V. B., He J., Chen X., Bourguignon G. J. A CD44-like endothelial cell transmembrane glycoprotein (GP116) interacts with extracellular matrix and ankyrin. Mol Cell Biol. 1992 Oct;12(10):4464–4471. doi: 10.1128/mcb.12.10.4464. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Broder C. C., Nussbaum O., Gutheil W. G., Bachovchin W. W., Berger E. A. CD26 antigen and HIV fusion? Science. 1994 May 20;264(5162):1156–1165. doi: 10.1126/science.7909959. [DOI] [PubMed] [Google Scholar]
- Callebaut C., Jacotot E., Krust B., Hovanessian A. G. Response. Science. 1994 May 20;264(5162):1162–1165. doi: 10.1126/science.264.5162.1162. [DOI] [PubMed] [Google Scholar]
- Callebaut C., Krust B., Jacotot E., Hovanessian A. G. T cell activation antigen, CD26, as a cofactor for entry of HIV in CD4+ cells. Science. 1993 Dec 24;262(5142):2045–2050. doi: 10.1126/science.7903479. [DOI] [PubMed] [Google Scholar]
- Camerini D., Planelles V., Chen I. S. CD26 antigen and HIV fusion? Science. 1994 May 20;264(5162):1160–1165. doi: 10.1126/science.7909961. [DOI] [PubMed] [Google Scholar]
- Carrillo A., Trowbridge D. B., Westervelt P., Ratner L. Identification of HIV1 determinants for T lymphoid cell line infection. Virology. 1993 Dec;197(2):817–824. doi: 10.1006/viro.1993.1664. [DOI] [PubMed] [Google Scholar]
- Chesebro B., Nishio J., Perryman S., Cann A., O'Brien W., Chen I. S., Wehrly K. Identification of human immunodeficiency virus envelope gene sequences influencing viral entry into CD4-positive HeLa cells, T-leukemia cells, and macrophages. J Virol. 1991 Nov;65(11):5782–5789. doi: 10.1128/jvi.65.11.5782-5789.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chesebro B., Wehrly K., Nishio J., Perryman S. Macrophage-tropic human immunodeficiency virus isolates from different patients exhibit unusual V3 envelope sequence homogeneity in comparison with T-cell-tropic isolates: definition of critical amino acids involved in cell tropism. J Virol. 1992 Nov;66(11):6547–6554. doi: 10.1128/jvi.66.11.6547-6554.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dalgleish A. G., Beverley P. C., Clapham P. R., Crawford D. H., Greaves M. F., Weiss R. A. The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature. 1984 Dec 20;312(5996):763–767. doi: 10.1038/312763a0. [DOI] [PubMed] [Google Scholar]
- Fisher R. A., Bertonis J. M., Meier W., Johnson V. A., Costopoulos D. S., Liu T., Tizard R., Walker B. D., Hirsch M. S., Schooley R. T. HIV infection is blocked in vitro by recombinant soluble CD4. Nature. 1988 Jan 7;331(6151):76–78. doi: 10.1038/331076a0. [DOI] [PubMed] [Google Scholar]
- Francis M. L., Meltzer M. S., Gendelman H. E. Interferons in the persistence, pathogenesis, and treatment of HIV infection. AIDS Res Hum Retroviruses. 1992 Feb;8(2):199–207. doi: 10.1089/aid.1992.8.199. [DOI] [PubMed] [Google Scholar]
- Gallatin W. M., Gale M. J., Jr, Hoffman P. A., Willerford D. M., Draves K. E., Benveniste R. E., Morton W. R., Clark E. A. Selective replication of simian immunodeficiency virus in a subset of CD4+ lymphocytes. Proc Natl Acad Sci U S A. 1989 May;86(9):3301–3305. doi: 10.1073/pnas.86.9.3301. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gartner S., Markovits P., Markovitz D. M., Kaplan M. H., Gallo R. C., Popovic M. The role of mononuclear phagocytes in HTLV-III/LAV infection. Science. 1986 Jul 11;233(4760):215–219. doi: 10.1126/science.3014648. [DOI] [PubMed] [Google Scholar]
- Goldstein L. A., Zhou D. F., Picker L. J., Minty C. N., Bargatze R. F., Ding J. F., Butcher E. C. A human lymphocyte homing receptor, the hermes antigen, is related to cartilage proteoglycan core and link proteins. Cell. 1989 Mar 24;56(6):1063–1072. doi: 10.1016/0092-8674(89)90639-9. [DOI] [PubMed] [Google Scholar]
- Guo M. M., Hildreth J. E. HIV-induced loss of CD44 expression in monocytic cell lines. J Immunol. 1993 Aug 15;151(4):2225–2236. [PubMed] [Google Scholar]
- Hansen J. E., Nielsen C., Mathiesen L. R., Nielsen J. O. Involvement of lymphocyte function-associated antigen-1 (LFA-1) in HIV infection: inhibition by monoclonal antibody. Scand J Infect Dis. 1991;23(1):31–36. doi: 10.3109/00365549109023371. [DOI] [PubMed] [Google Scholar]
- Harouse J. M., Bhat S., Spitalnik S. L., Laughlin M., Stefano K., Silberberg D. H., Gonzalez-Scarano F. Inhibition of entry of HIV-1 in neural cell lines by antibodies against galactosyl ceramide. Science. 1991 Jul 19;253(5017):320–323. doi: 10.1126/science.1857969. [DOI] [PubMed] [Google Scholar]
- Harouse J. M., Laughlin M. A., Pletcher C., Friedman H. M., Gonzalez-Scarano F. Entry of human immunodeficiency virus-1 into glial cells proceeds via an alternate, efficient pathway. J Leukoc Biol. 1991 Jun;49(6):605–609. doi: 10.1002/jlb.49.6.605. [DOI] [PubMed] [Google Scholar]
- Harrington R. D., Geballe A. P. Cofactor requirement for human immunodeficiency virus type 1 entry into a CD4-expressing human cell line. J Virol. 1993 Oct;67(10):5939–5947. doi: 10.1128/jvi.67.10.5939-5947.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haynes B. F., Hale L. P., Patton K. L., Martin M. E., McCallum R. M. Measurement of an adhesion molecule as an indicator of inflammatory disease activity. Up-regulation of the receptor for hyaluronate (CD44) in rheumatoid arthritis. Arthritis Rheum. 1991 Nov;34(11):1434–1443. doi: 10.1002/art.1780341115. [DOI] [PubMed] [Google Scholar]
- Haynes B. F., Harden E. A., Telen M. J., Hemler M. E., Strominger J. L., Palker T. J., Scearce R. M., Eisenbarth G. S. Differentiation of human T lymphocytes. I. Acquisition of a novel human cell surface protein (p80) during normal intrathymic T cell maturation. J Immunol. 1983 Sep;131(3):1195–1200. [PubMed] [Google Scholar]
- Haynes B. F., Liao H. X., Patton K. L. The transmembrane hyaluronate receptor (CD44): multiple functions, multiple forms. Cancer Cells. 1991 Sep;3(9):347–350. [PubMed] [Google Scholar]
- Haynes B. F., Telen M. J., Hale L. P., Denning S. M. CD44--a molecule involved in leukocyte adherence and T-cell activation. Immunol Today. 1989 Dec;10(12):423–428. doi: 10.1016/0167-5699(89)90040-6. [DOI] [PubMed] [Google Scholar]
- Hildreth J. E., Orentas R. J. Involvement of a leukocyte adhesion receptor (LFA-1) in HIV-induced syncytium formation. Science. 1989 Jun 2;244(4908):1075–1078. doi: 10.1126/science.2543075. [DOI] [PubMed] [Google Scholar]
- Hwang S. S., Boyle T. J., Lyerly H. K., Cullen B. R. Identification of envelope V3 loop as the major determinant of CD4 neutralization sensitivity of HIV-1. Science. 1992 Jul 24;257(5069):535–537. doi: 10.1126/science.1636088. [DOI] [PubMed] [Google Scholar]
- Hwang S. S., Boyle T. J., Lyerly H. K., Cullen B. R. Identification of the envelope V3 loop as the primary determinant of cell tropism in HIV-1. Science. 1991 Jul 5;253(5015):71–74. doi: 10.1126/science.1905842. [DOI] [PubMed] [Google Scholar]
- Kitano K., Baldwin G. C., Raines M. A., Golde D. W. Differentiating agents facilitate infection of myeloid leukemia cell lines by monocytotropic HIV-1 strains. Blood. 1990 Nov 15;76(10):1980–1988. [PubMed] [Google Scholar]
- Lesley J., He Q., Miyake K., Hamann A., Hyman R., Kincade P. W. Requirements for hyaluronic acid binding by CD44: a role for the cytoplasmic domain and activation by antibody. J Exp Med. 1992 Jan 1;175(1):257–266. doi: 10.1084/jem.175.1.257. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lesley J., Hyman R. CD44 can be activated to function as an hyaluronic acid receptor in normal murine T cells. Eur J Immunol. 1992 Oct;22(10):2719–2723. doi: 10.1002/eji.1830221036. [DOI] [PubMed] [Google Scholar]
- Liao H. X., Levesque M. C., Patton K., Bergamo B., Jones D., Moody M. A., Telen M. J., Haynes B. F. Regulation of human CD44H and CD44E isoform binding to hyaluronan by phorbol myristate acetate and anti-CD44 monoclonal and polyclonal antibodies. J Immunol. 1993 Dec 1;151(11):6490–6499. [PubMed] [Google Scholar]
- Mackay C. R., Terpe H. J., Stauder R., Marston W. L., Stark H., Günthert U. Expression and modulation of CD44 variant isoforms in humans. J Cell Biol. 1994 Jan;124(1-2):71–82. doi: 10.1083/jcb.124.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maddon P. J., Dalgleish A. G., McDougal J. S., Clapham P. R., Weiss R. A., Axel R. The T4 gene encodes the AIDS virus receptor and is expressed in the immune system and the brain. Cell. 1986 Nov 7;47(3):333–348. doi: 10.1016/0092-8674(86)90590-8. [DOI] [PubMed] [Google Scholar]
- McCallus D. E., Ugen K. E., Sato A. I., Williams W. V., Weiner D. B. Construction of a recombinant bacterial human CD4 expression system producing a bioactive CD4 molecule. Viral Immunol. 1992 Summer;5(2):163–172. doi: 10.1089/vim.1992.5.163. [DOI] [PubMed] [Google Scholar]
- Meylan P. R., Spina C. A., Richman D. D., Kornbluth R. S. In vitro differentiation of monocytoid THP-1 cells affects their permissiveness for HIV strains: a model system for studying the cellular basis of HIV differential tropism. Virology. 1993 Mar;193(1):256–267. doi: 10.1006/viro.1993.1121. [DOI] [PubMed] [Google Scholar]
- Morimoto C., Lord C. I., Zhang C., Duke-Cohan J. S., Letvin N. L., Schlossman S. F. Role of CD26/dipeptidyl peptidase IV in human immunodeficiency virus type 1 infection and apoptosis. Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):9960–9964. doi: 10.1073/pnas.91.21.9960. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Brien W. A., Chen I. S., Ho D. D., Daar E. S. Mapping genetic determinants for human immunodeficiency virus type 1 resistance to soluble CD4. J Virol. 1992 May;66(5):3125–3130. doi: 10.1128/jvi.66.5.3125-3130.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pantaleo G., Butini L., Graziosi C., Poli G., Schnittman S. M., Greenhouse J. J., Gallin J. I., Fauci A. S. Human immunodeficiency virus (HIV) infection in CD4+ T lymphocytes genetically deficient in LFA-1: LFA-1 is required for HIV-mediated cell fusion but not for viral transmission. J Exp Med. 1991 Feb 1;173(2):511–514. doi: 10.1084/jem.173.2.511. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pantaleo G., Poli G., Butini L., Fox C., Dayton A. I., Fauci A. S. Dissociation between syncytia formation and HIV spreading. Suppression of syncytia formation does not necessarily reflect inhibition of HIV infection. Eur J Immunol. 1991 Jul;21(7):1771–1774. doi: 10.1002/eji.1830210730. [DOI] [PubMed] [Google Scholar]
- Patience C., McKnight A., Clapham P. R., Boyd M. T., Weiss R. A., Schulz T. F. CD26 antigen and HIV fusion? Science. 1994 May 20;264(5162):1159–1165. doi: 10.1126/science.7909960. [DOI] [PubMed] [Google Scholar]
- Poli G., Fauci A. S. Cytokine modulation of HIV expression. Semin Immunol. 1993 Jun;5(3):165–173. doi: 10.1006/smim.1993.1020. [DOI] [PubMed] [Google Scholar]
- Rivadeneira E. D., Sauls D. L., Yu Y., Haynes B. F., Weinberg J. B. Inhibition of HIV type 1 infection of mononuclear phagocytes by anti-CD44 antibodies. AIDS Res Hum Retroviruses. 1995 May;11(5):541–546. doi: 10.1089/aid.1995.11.541. [DOI] [PubMed] [Google Scholar]
- Sattentau Q. J., Weiss R. A. The CD4 antigen: physiological ligand and HIV receptor. Cell. 1988 Mar 11;52(5):631–633. doi: 10.1016/0092-8674(88)90397-2. [DOI] [PubMed] [Google Scholar]
- Screaton G. R., Bell M. V., Jackson D. G., Cornelis F. B., Gerth U., Bell J. I. Genomic structure of DNA encoding the lymphocyte homing receptor CD44 reveals at least 12 alternatively spliced exons. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):12160–12164. doi: 10.1073/pnas.89.24.12160. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shadduck P. P., Weinberg J. B., Haney A. F., Bartlett J. A., Langlois A. J., Bolognesi D. P., Matthews T. J. Lack of enhancing effect of human anti-human immunodeficiency virus type 1 (HIV-1) antibody on HIV-1 infection of human blood monocytes and peritoneal macrophages. J Virol. 1991 Aug;65(8):4309–4316. doi: 10.1128/jvi.65.8.4309-4316.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shepley M. P., Racaniello V. R. A monoclonal antibody that blocks poliovirus attachment recognizes the lymphocyte homing receptor CD44. J Virol. 1994 Mar;68(3):1301–1308. doi: 10.1128/jvi.68.3.1301-1308.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stamenkovic I., Aruffo A., Amiot M., Seed B. The hematopoietic and epithelial forms of CD44 are distinct polypeptides with different adhesion potentials for hyaluronate-bearing cells. EMBO J. 1991 Feb;10(2):343–348. doi: 10.1002/j.1460-2075.1991.tb07955.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sy M. S., Guo Y. J., Stamenkovic I. Inhibition of tumor growth in vivo with a soluble CD44-immunoglobulin fusion protein. J Exp Med. 1992 Aug 1;176(2):623–627. doi: 10.1084/jem.176.2.623. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tateno M., Gonzalez-Scarano F., Levy J. A. Human immunodeficiency virus can infect CD4-negative human fibroblastoid cells. Proc Natl Acad Sci U S A. 1989 Jun;86(11):4287–4290. doi: 10.1073/pnas.86.11.4287. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Telen M. J., Eisenbarth G. S., Haynes B. F. Human erythrocyte antigens. Regulation of expression of a novel erythrocyte surface antigen by the inhibitor Lutheran In(Lu) gene. J Clin Invest. 1983 Jun;71(6):1878–1886. doi: 10.1172/JCI110943. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Valentin A., Lundin K., Patarroyo M., Asjö B. The leukocyte adhesion glycoprotein CD18 participates in HIV-1-induced syncytia formation in monocytoid and T cells. J Immunol. 1990 Feb 1;144(3):934–937. [PubMed] [Google Scholar]
- Watson S. R., Fennie C., Lasky L. A. Neutrophil influx into an inflammatory site inhibited by a soluble homing receptor-IgG chimaera. Nature. 1991 Jan 10;349(6305):164–167. doi: 10.1038/349164a0. [DOI] [PubMed] [Google Scholar]
- Weinberg J. B., Matthews T. J., Cullen B. R., Malim M. H. Productive human immunodeficiency virus type 1 (HIV-1) infection of nonproliferating human monocytes. J Exp Med. 1991 Dec 1;174(6):1477–1482. doi: 10.1084/jem.174.6.1477. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wolinsky S. M., Wike C. M., Korber B. T., Hutto C., Parks W. P., Rosenblum L. L., Kunstman K. J., Furtado M. R., Muñoz J. L. Selective transmission of human immunodeficiency virus type-1 variants from mothers to infants. Science. 1992 Feb 28;255(5048):1134–1137. doi: 10.1126/science.1546316. [DOI] [PubMed] [Google Scholar]
- Zhu T., Mo H., Wang N., Nam D. S., Cao Y., Koup R. A., Ho D. D. Genotypic and phenotypic characterization of HIV-1 patients with primary infection. Science. 1993 Aug 27;261(5125):1179–1181. doi: 10.1126/science.8356453. [DOI] [PubMed] [Google Scholar]