Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1995 Jul;69(7):4103–4111. doi: 10.1128/jvi.69.7.4103-4111.1995

Ectromelia virus RING finger protein is localized in virus factories and is required for virus replication in macrophages.

T G Senkevich 1, E J Wolffe 1, R M Buller 1
PMCID: PMC189145  PMID: 7769668

Abstract

We have previously described a gene of ectromelia virus (EV) that codes for a 28-kDa RING zinc finger-containing protein (p28) that is nonessential for virus growth in cell culture but is critical for EV pathogenicity in mice (T. G. Senkevich, E. V. Koonin, and R. M. L. Buller, Virology 198:118-128; 1994). Here, we show that, unlike all tested cell cultures, the expression of p28 is required for in vitro replication of EV in murine resident peritoneal macrophages. In macrophages infected with the p28- mutant, viral DNA replication was not detected, whereas the synthesis of at least two early proteins was observed. Immunofluorescence and biochemical analyses showed that in EV-infected macrophages or BSC-1 cells, p28 is associated with virus factories. By use of a vaccinia virus expression system to examine different truncated versions of p28, it was shown that the disruption of the specific structure of the RING domain had no influence on the intracellular localization of this protein. When viral DNA replication was inhibited with cytosine arabinoside, p28 was found in distinct, focal structures that may be precursors to the factories. We hypothesize that in macrophages, which are highly specialized, nondividing cells, p28 substitutes for an unknown cellular factor(s) that may be required for viral DNA replication or a stage of virus reproduction between the expression of early genes and the onset of DNA synthesis. In the absence of p28, the attenuation of EV pathogenicity can be explained by a failure of the virus to replicate in macrophage lineage cells at all successive steps in the spread of virus from the skin to its target organ, the liver.

Full Text

The Full Text of this article is available as a PDF (921.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Austyn J. M., Gordon S. F4/80, a monoclonal antibody directed specifically against the mouse macrophage. Eur J Immunol. 1981 Oct;11(10):805–815. doi: 10.1002/eji.1830111013. [DOI] [PubMed] [Google Scholar]
  2. Buller R. M., Palumbo G. J. Poxvirus pathogenesis. Microbiol Rev. 1991 Mar;55(1):80–122. doi: 10.1128/mr.55.1.80-122.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chen W., Drillien R., Spehner D., Buller R. M. Restricted replication of ectromelia virus in cell culture correlates with mutations in virus-encoded host range gene. Virology. 1992 Apr;187(2):433–442. doi: 10.1016/0042-6822(92)90445-u. [DOI] [PubMed] [Google Scholar]
  4. Cohen D. A., Morris R. E., Bubel H. C. Abortive ectromelia virus infection in peritoneal macrophages activated by Corynebacterium parvum. J Leukoc Biol. 1984 Feb;35(2):179–192. doi: 10.1002/jlb.35.2.179. [DOI] [PubMed] [Google Scholar]
  5. Everett R. D., Barlow P., Milner A., Luisi B., Orr A., Hope G., Lyon D. A novel arrangement of zinc-binding residues and secondary structure in the C3HC4 motif of an alpha herpes virus protein family. J Mol Biol. 1993 Dec 20;234(4):1038–1047. doi: 10.1006/jmbi.1993.1657. [DOI] [PubMed] [Google Scholar]
  6. Freemont P. S., Hanson I. M., Trowsdale J. A novel cysteine-rich sequence motif. Cell. 1991 Feb 8;64(3):483–484. doi: 10.1016/0092-8674(91)90229-r. [DOI] [PubMed] [Google Scholar]
  7. Fuerst T. R., Niles E. G., Studier F. W., Moss B. Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8122–8126. doi: 10.1073/pnas.83.21.8122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gershon P. D., Moss B. Stimulation of poly(A) tail elongation by the VP39 subunit of the vaccinia virus-encoded poly(A) polymerase. J Biol Chem. 1993 Jan 25;268(3):2203–2210. [PubMed] [Google Scholar]
  9. Karupiah G., Fredrickson T. N., Holmes K. L., Khairallah L. H., Buller R. M. Importance of interferons in recovery from mousepox. J Virol. 1993 Jul;67(7):4214–4226. doi: 10.1128/jvi.67.7.4214-4226.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lovering R., Hanson I. M., Borden K. L., Martin S., O'Reilly N. J., Evan G. I., Rahman D., Pappin D. J., Trowsdale J., Freemont P. S. Identification and preliminary characterization of a protein motif related to the zinc finger. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2112–2116. doi: 10.1073/pnas.90.6.2112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. MIMS C. A. ASPECTS OF THE PATHOGENESIS OF VIRUS DISEASES. Bacteriol Rev. 1964 Mar;28:30–71. doi: 10.1128/br.28.1.30-71.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. MIMS C. A. The response of mice to large intravenous injections of ectromelia virus. I. The fate of injected virus. Br J Exp Pathol. 1959 Dec;40:533–542. [PMC free article] [PubMed] [Google Scholar]
  13. MIMS C. A. The response of mice to large intravenous injections of ectromelia virus. II. The growth of virus in the liver. Br J Exp Pathol. 1959 Dec;40:543–550. [PMC free article] [PubMed] [Google Scholar]
  14. Massung R. F., Esposito J. J., Liu L. I., Qi J., Utterback T. R., Knight J. C., Aubin L., Yuran T. E., Parsons J. M., Loparev V. N. Potential virulence determinants in terminal regions of variola smallpox virus genome. Nature. 1993 Dec 23;366(6457):748–751. doi: 10.1038/366748a0. [DOI] [PubMed] [Google Scholar]
  15. Matloubian M., Kolhekar S. R., Somasundaram T., Ahmed R. Molecular determinants of macrophage tropism and viral persistence: importance of single amino acid changes in the polymerase and glycoprotein of lymphocytic choriomeningitis virus. J Virol. 1993 Dec;67(12):7340–7349. doi: 10.1128/jvi.67.12.7340-7349.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Natuk R. J., Holowczak J. A. Vaccinia virus proteins on the plasma membrane of infected cells. III. Infection of peritoneal macrophages. Virology. 1985 Dec;147(2):354–372. doi: 10.1016/0042-6822(85)90138-2. [DOI] [PubMed] [Google Scholar]
  17. Niles E. G., Lee-Chen G. J., Shuman S., Moss B., Broyles S. S. Vaccinia virus gene D12L encodes the small subunit of the viral mRNA capping enzyme. Virology. 1989 Oct;172(2):513–522. doi: 10.1016/0042-6822(89)90194-3. [DOI] [PubMed] [Google Scholar]
  18. Nuez B., Rojo F., Salas M. Requirement for an A-tract structure at the binding site of phage phi 29 transcriptional activator. J Mol Biol. 1994 Mar 25;237(2):175–181. doi: 10.1006/jmbi.1994.1219. [DOI] [PubMed] [Google Scholar]
  19. ROBERTS J. A. GROWTH OF VIRULENT AND ATTENUATED ECTROMELIA VIRUS IN CULTURED MACROPHAGES FROM NORMAL AND ECTROMELIAIMMUNE MICE. J Immunol. 1964 Jun;92:837–842. [PubMed] [Google Scholar]
  20. ROBERTS J. A. HISTOPATHOGENESIS OF MOUSEPOX: III. ECTROMELIA VIRULENCE. Br J Exp Pathol. 1963 Oct;44:465–472. [PMC free article] [PubMed] [Google Scholar]
  21. Rosales R., Sutter G., Moss B. A cellular factor is required for transcription of vaccinia viral intermediate-stage genes. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3794–3798. doi: 10.1073/pnas.91.9.3794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Senkevich T. G., Koonin E. V., Buller R. M. A poxvirus protein with a RING zinc finger motif is of crucial importance for virulence. Virology. 1994 Jan;198(1):118–128. doi: 10.1006/viro.1994.1014. [DOI] [PubMed] [Google Scholar]
  23. Shchelkunov S. N., Marennikova S. S., Blinov V. M., Resenchuk S. M., Tetmenin A. V., Chizhikov V. E., Gutorov V. V., Safronov P. F., Kurmanov R. K., Sandakhchiev L. S. Polnaia kodiruiushchaia posledovatel'nost' genoma virusa natural'noi ospy. Dokl Akad Nauk. 1993 Feb;328(5):629–632. [PubMed] [Google Scholar]
  24. Upton C., Schiff L., Rice S. A., Dowdeswell T., Yang X., McFadden G. A poxvirus protein with a RING finger motif binds zinc and localizes in virus factories. J Virol. 1994 Jul;68(7):4186–4195. doi: 10.1128/jvi.68.7.4186-4195.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Watson J. C., Chang H. W., Jacobs B. L. Characterization of a vaccinia virus-encoded double-stranded RNA-binding protein that may be involved in inhibition of the double-stranded RNA-dependent protein kinase. Virology. 1991 Nov;185(1):206–216. doi: 10.1016/0042-6822(91)90768-7. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES