Abstract
Background—Acute pancreatitis associated with hypercalcaemia has been described in humans and experimental animals. It has been demonstrated that calcium dose dependently accelerates trypsinogen activation, and it is generally believed that ectopic activation of digestive enzymes is an early event in the pathophysiology of acute pancreatitis. Aims and methods—Trypsinogen activation peptide (TAP) was measured in isolated rat pancreatic acini exposed to elevated extracellular calcium in order to investigate the association between calcium and trypsinogen activation in living cells. TAP was determined in the culture medium either before (extracellular compartment) or after (intracellular compartment) cell homogenisation. Results—Neither secretory stimulation nor elevated calcium alone caused an increase in TAP levels. Maximal cerulein or carbachol stimulation superimposed on high medium calcium, however, significantly increased intracellular trypsinogen activation twofold. This increase was inhibited by either NG-monomethyl-L-arginine (L-NMMA) or verapamil. Acinar cell morphology and function remained intact as demonstrated by electron microscopy and secretagogue dose-response studies. Conclusions—These results support the hypothesis that increased intracellular trypsinogen activation is an early step in the pathogenesis of hypercalcaemia induced pancreatitis. The model may have a bearing on other types of pancreatitis as elevated cytosolic calcium is thought to be an early event in the pathogenesis of acute pancreatitis in general.
Keywords: hypercalcaemia; pancreatitis pathogenesis; serine proteases; acute pancreatitis
Full Text
The Full Text of this article is available as a PDF (163.5 KB).
Figure 1 .
: Effect of calcium on trypsinogen activation. Calcium accelerates TAP generation dose dependently. After 30 minutes the points of all three curves are significantly different (mean (SD); n=4; p<0.05).
Figure 2 .
: Effect of elevated calcium on TAP levels (mean (SEM); n=6). The increase in TAP of cells stimulated with 10-10M cerulein is significant (*p<0.05) compared with all preparations except 10-9M cerulein; the effect of the 10-9M cerulein preparation is significant compared with unstimulated acini (**p=0.02) (closed circles = 1.2 mM CaCl2; closed squares = 5.0 mM CaCl2).
Figure 3 .
: Effect of L-NMMA or verapamil on intracellular TAP levels. Each graph represents an individual set of experiments (mean (SEM), n=6). TAP levels of acini incubated in 5.0 mM calcium and stimulated with 10-5M carbachol (A) or 10-10M cerulein (B, C) were significantly reduced when 10-3M L-NMMA (A, B) or 10-4M verapamil (C) was added (*p<0.05).
Figure 4 .
: Electron micrograph of an isolated acinar preparation after one hour's incubation at 37°C in medium containing 5.0 mM calcium and 10-10M cerulein. There are no signs of acinar cell damage with intact acinar cell morphology, and normal nucleus (N), mitochondria (M), and endoplasmic reticulum (ER). Signs of maximal cerulein induced stimulation are an increased number of condensing vacuoles (CV) in an enlarged Golgi apparatus and a reduced number of zymogen granules (Z) (Bar = 4 µM; L = acinar lumen; int = interstitial space).
Figure 5 .
: Effect of calcium on amylase release of cerulein stimulated pancreatic acini (mean (SEM); n=6) and carbachol stimulated pancreatic acini (mean (SEM); n=8). In both medium calcium concentrations (closed circles = 1.2 mM CaCl2; closed squares = 5.0 mM CaCl2), maximal amylase secretion occurred at 10-10M cerulein and 10-5M carbachol, respectively, and stimulation with higher doses of cerulein or cabachol (supramaximal stimulation) inhibited amylase release. Extracellular calcium at 5.0 mM significantly enhanced submaximally and maximally cerulein stimulated and maximally and supramaximally carbachol stimulated amylase output (*p<0.05). Supramaximal stimulation reduced amylase release both absolutely and relatively compared with acinar cells in physiological calcium.
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bruzzone R., Halban P. A., Gjinovci A., Trimble E. R. A new, rapid, method for preparation of dispersed pancreatic acini. Biochem J. 1985 Mar 1;226(2):621–624. doi: 10.1042/bj2260621. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bruzzone R. The molecular basis of enzyme secretion. Gastroenterology. 1990 Oct;99(4):1157–1176. doi: 10.1016/0016-5085(90)90640-m. [DOI] [PubMed] [Google Scholar]
- Colomb E., Figarella C. Comparative studies on the mechanism of activation of the two human trypsinogens. Biochim Biophys Acta. 1979 Dec 7;571(2):343–351. doi: 10.1016/0005-2744(79)90104-9. [DOI] [PubMed] [Google Scholar]
- Fernández-del Castillo C., Harringer W., Warshaw A. L., Vlahakes G. J., Koski G., Zaslavsky A. M., Rattner D. W. Risk factors for pancreatic cellular injury after cardiopulmonary bypass. N Engl J Med. 1991 Aug 8;325(6):382–387. doi: 10.1056/NEJM199108083250602. [DOI] [PubMed] [Google Scholar]
- Frick T. W., Fryd D. S., Sutherland D. E., Goodale R. L., Simmons R. L., Najarian J. S. Hypercalcemia associated with pancreatitis and hyperamylasemia in renal transplant recipients. Data from the Minnesota randomized trial of cyclosporine versus antilymphoblast azathioprine. Am J Surg. 1987 Nov;154(5):487–489. doi: 10.1016/0002-9610(87)90260-1. [DOI] [PubMed] [Google Scholar]
- Frick T. W., Hailemariam S., Heitz P. U., Largiadèr F., Goodale R. L. Acute hypercalcemia induces acinar cell necrosis and intraductal protein precipitates in the pancreas of cats and guinea pigs. Gastroenterology. 1990 Jun;98(6):1675–1681. doi: 10.1016/0016-5085(90)91106-g. [DOI] [PubMed] [Google Scholar]
- Frick T. W., Mithöfer K., Fernández-del Castillo C., Rattner D. W., Warshaw A. L. Hypercalcemia causes acute pancreatitis by pancreatic secretory block, intracellular zymogen accumulation, and acinar cell injury. Am J Surg. 1995 Jan;169(1):167–172. doi: 10.1016/s0002-9610(99)80127-5. [DOI] [PubMed] [Google Scholar]
- Frick T. W., Speiser D. E., Bimmler D., Largiadèr F. Drug-induced acute pancreatitis: further criticism. Dig Dis. 1993;11(2):113–132. doi: 10.1159/000171405. [DOI] [PubMed] [Google Scholar]
- Frick T. W., Wiegand D., Bimmler D., Fernández-del Castillo C., Rattner D. W., Warshaw A. L. A rat model to study hypercalcemia-induced acute pancreatitis. Int J Pancreatol. 1994 Apr;15(2):91–96. doi: 10.1007/BF02924658. [DOI] [PubMed] [Google Scholar]
- Gorelick F. S., Matovcik L. M. Lysosomal enzymes and pancreatitis. Gastroenterology. 1995 Aug;109(2):620–625. doi: 10.1016/0016-5085(95)90355-0. [DOI] [PubMed] [Google Scholar]
- Gukovskaya A., Pandol S. Nitric oxide production regulates cGMP formation and calcium influx in pancreatic acinar cells. Am J Physiol. 1994 Mar;266(3 Pt 1):G350–G356. doi: 10.1152/ajpgi.1994.266.3.G350. [DOI] [PubMed] [Google Scholar]
- Hurley P. R., Cook A., Jehanli A., Austen B. M., Hermon-Taylor J. Development of radioimmunoassays for free tetra-L-aspartyl-L-lysine trypsinogen activation peptides (TAP). J Immunol Methods. 1988 Jul 22;111(2):195–203. doi: 10.1016/0022-1759(88)90127-5. [DOI] [PubMed] [Google Scholar]
- Kassell B., Kay J. Zymogens of proteolytic enzymes. Science. 1973 Jun 8;180(4090):1022–1027. doi: 10.1126/science.180.4090.1022. [DOI] [PubMed] [Google Scholar]
- Krims P. E., Pandol S. J. Free cytosolic calcium and secretagogue-stimulated initial pancreatic exocrine secretion. Pancreas. 1988;3(4):383–390. doi: 10.1097/00006676-198808000-00003. [DOI] [PubMed] [Google Scholar]
- Layer P., Hotz J., Cherian L., Goebell H. In vitro stimulation of pancreatic enzyme discharge by calcium. Gut. 1987 Oct;28(10):1215–1220. doi: 10.1136/gut.28.10.1215. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leach S. D., Modlin I. M., Scheele G. A., Gorelick F. S. Intracellular activation of digestive zymogens in rat pancreatic acini. Stimulation by high doses of cholecystokinin. J Clin Invest. 1991 Jan;87(1):362–366. doi: 10.1172/JCI114995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mithöfer K., Fernández-del Castillo C., Frick T. W., Lewandrowski K. B., Rattner D. W., Warshaw A. L. Acute hypercalcemia causes acute pancreatitis and ectopic trypsinogen activation in the rat. Gastroenterology. 1995 Jul;109(1):239–246. doi: 10.1016/0016-5085(95)90290-2. [DOI] [PubMed] [Google Scholar]
- Mithöfer K., Fernández-del Castillo C., Mandavilli U., Rattner D. W., Warshaw A. L. Quantitative assay of trypsinogen by measurement of cleaved activation peptide after activation with enterokinase. Anal Biochem. 1995 Sep 20;230(2):348–350. doi: 10.1006/abio.1995.1486. [DOI] [PubMed] [Google Scholar]
- Mössner J., Schwarz J., Fischbach W. Influence of "calcium2+-channel blockers" on exocrine pancreatic secretion by isolated rat acini. Res Exp Med (Berl) 1988;188(4):255–265. doi: 10.1007/BF01852274. [DOI] [PubMed] [Google Scholar]
- Petersen O. H., Gallacher D. V. Electrophysiology of pancreatic and salivary acinar cells. Annu Rev Physiol. 1988;50:65–80. doi: 10.1146/annurev.ph.50.030188.000433. [DOI] [PubMed] [Google Scholar]
- Slimak G. G., Stark H. A., Egan J. J., Jensen R. T., Gardner J. D. Effect of verapamil on the cyclic AMP-mediated pathway for amylase secretion in rat pancreatic acini. Pancreas. 1993 Mar;8(2):212–219. doi: 10.1097/00006676-199303000-00012. [DOI] [PubMed] [Google Scholar]
- Ward J. B., Petersen O. H., Jenkins S. A., Sutton R. Is an elevated concentration of acinar cytosolic free ionised calcium the trigger for acute pancreatitis? Lancet. 1995 Oct 14;346(8981):1016–1019. doi: 10.1016/s0140-6736(95)91695-4. [DOI] [PubMed] [Google Scholar]