Skip to main content
Gut logoLink to Gut
. 1997 Oct;41(4):436–441. doi: 10.1136/gut.41.4.436

Hirschsprung's disease: genetic mutations in mice and men

K ROBERTSON 1, I MASON 1, S HALL 1
PMCID: PMC1891517  PMID: 9391239

Abstract

MRC Brain Development Programme,Department of Developmental Neurobiology,UMDS Guy's Hospital,London SE1 9RT, UK

S HALL

Hirschsprung's disease is a neuronal dysplasia of the hindgut, characterised by a loss of neurones, which affects about 1in 5000 live births.1 Genetic factors have been implicated in the aetiology of this disease in about 20% of cases and a dominant pattern of inheritance has been revealed in several families. The pathogenesis of the aganglionosis is often attributed to a failure of migration of neural crest cells, although this has not been proven. 
Recently, mutations in a developmentally regulated receptor tyrosine kinase gene, ret, and mutations in the endothelin receptor-B gene (ENDR-B) have both been linked to familial Hirschsprung's disease in humans.4-6 Moreover, certain mutant mouse strains—namely piebald lethal and lethal spotted—exhibit striking similarities to the human condition. The mutation which gives rise to piebald lethal has now been found to be in the ENDR-B gene,7 and the mutation associated with lethal spotted occurs in the gene for endothelin-3 (ET-3), a ligand for ENDR-B.8 
Two transgenic mouse lines have been developed which also reflect the human disease: ret-k , which has a loss of function mutation of the ret gene,9 and ENDR-B null.10 In addition, the introduction of a Lac-Z reporter gene into neural crest cells of aganglionic mice has made it possible to study directly the fate of enteric neuroblasts which are affected by "Hirschsprung's-like" mutations.11 Here, we review the possible roles of RET and endothelin in the normal development of the enteric nervous system, and the significance of their mutated forms in the pathogenesis of familial aganglionosis. 
This review focuses on recent advances in our understanding of the genetic basis of the lesions which have been implicated in congenital forms of Hirschsprung's disease. Disruption of these genes in the mouse, either by transgenic "knockout" approaches or in mutant mouse lines, offers the prospect of greater understanding of both the cellular and developmental bases of the human disease. 



Full Text

The Full Text of this article is available as a PDF (117.0 KB).

Figure 1 .

Figure 1

: (A) In situ hybridisation of chicken ret to a 10 somite stage chicken embryo. ret RNA is expressed in the vagal region of the neural ectoderm, (between the arrows), just prior to neural crest migration. The posterior region (S) of the neural ectoderm does not express ret. (B) and (C) In situ hybridisation of chicken ret to transverse sections through developing chicken mid-gut. (B) At embryonic day 4, ret positive neural crest derived precursors (arrowheads) are begining to migrate through the gut (D, dorsal; V, ventral). (C) At embryonic day 9, ret positive neuroblasts (arrowheads) have become organised into the myenteric (MY) and submucous (SM) plexuses. Reproduced from reference 30 with kind permission from Elsevier Science Ireland Ltd., Bay 15K, Shannon Industrial Estate, Co. Clare, Ireland.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Angrist M., Kauffman E., Slaugenhaupt S. A., Matise T. C., Puffenberger E. G., Washington S. S., Lipson A., Cass D. T., Reyna T., Weeks D. E. A gene for Hirschsprung disease (megacolon) in the pericentromeric region of human chromosome 10. Nat Genet. 1993 Aug;4(4):351–356. doi: 10.1038/ng0893-351. [DOI] [PubMed] [Google Scholar]
  2. Badner J. A., Sieber W. K., Garver K. L., Chakravarti A. A genetic study of Hirschsprung disease. Am J Hum Genet. 1990 Mar;46(3):568–580. [PMC free article] [PubMed] [Google Scholar]
  3. Baynash A. G., Hosoda K., Giaid A., Richardson J. A., Emoto N., Hammer R. E., Yanagisawa M. Interaction of endothelin-3 with endothelin-B receptor is essential for development of epidermal melanocytes and enteric neurons. Cell. 1994 Dec 30;79(7):1277–1285. doi: 10.1016/0092-8674(94)90018-3. [DOI] [PubMed] [Google Scholar]
  4. Bottani A., Xie Y. G., Binkert F., Schinzel A. A case of Hirschsprung disease with a chromosome 13 microdeletion, del(13)(q32.3q33.2): potential mapping of one disease locus. Hum Genet. 1991 Oct;87(6):748–750. doi: 10.1007/BF00201741. [DOI] [PubMed] [Google Scholar]
  5. Buj-Bello A., Buchman V. L., Horton A., Rosenthal A., Davies A. M. GDNF is an age-specific survival factor for sensory and autonomic neurons. Neuron. 1995 Oct;15(4):821–828. doi: 10.1016/0896-6273(95)90173-6. [DOI] [PubMed] [Google Scholar]
  6. Burnstock G. Innervation of bladder and bowel. Ciba Found Symp. 1990;151:2–26. doi: 10.1002/9780470513941.ch2. [DOI] [PubMed] [Google Scholar]
  7. Durbec P. L., Larsson-Blomberg L. B., Schuchardt A., Costantini F., Pachnis V. Common origin and developmental dependence on c-ret of subsets of enteric and sympathetic neuroblasts. Development. 1996 Jan;122(1):349–358. doi: 10.1242/dev.122.1.349. [DOI] [PubMed] [Google Scholar]
  8. Edery P., Lyonnet S., Mulligan L. M., Pelet A., Dow E., Abel L., Holder S., Nihoul-Fékété C., Ponder B. A., Munnich A. Mutations of the RET proto-oncogene in Hirschsprung's disease. Nature. 1994 Jan 27;367(6461):378–380. doi: 10.1038/367378a0. [DOI] [PubMed] [Google Scholar]
  9. Fujimoto T., Hata J., Yokoyama S., Mitomi T. A study of the extracellular matrix protein as the migration pathway of neural crest cells in the gut: analysis in human embryos with special reference to the pathogenesis of Hirschsprung's disease. J Pediatr Surg. 1989 Jun;24(6):550–556. doi: 10.1016/s0022-3468(89)80504-4. [DOI] [PubMed] [Google Scholar]
  10. Gannon B. J., Burnstock G., Noblett H. R., Campbell P. E. Histochemical diagnosis of Hirschsprung's disease. Lancet. 1969 Apr 26;1(7600):894–895. doi: 10.1016/s0140-6736(69)91946-1. [DOI] [PubMed] [Google Scholar]
  11. Garver K. L., Law J. C., Garver B. Hirschsprung disease: a genetic study. Clin Genet. 1985 Dec;28(6):503–508. doi: 10.1111/j.1399-0004.1985.tb00417.x. [DOI] [PubMed] [Google Scholar]
  12. Gershon M. D., Chalazonitis A., Rothman T. P. From neural crest to bowel: development of the enteric nervous system. J Neurobiol. 1993 Feb;24(2):199–214. doi: 10.1002/neu.480240207. [DOI] [PubMed] [Google Scholar]
  13. Halal F., Morel J. The syndrome of Hirschsprung disease, microcephaly, unusual face, and mental retardation. Am J Med Genet. 1990 Sep;37(1):106–108. doi: 10.1002/ajmg.1320370125. [DOI] [PubMed] [Google Scholar]
  14. Hosoda K., Hammer R. E., Richardson J. A., Baynash A. G., Cheung J. C., Giaid A., Yanagisawa M. Targeted and natural (piebald-lethal) mutations of endothelin-B receptor gene produce megacolon associated with spotted coat color in mice. Cell. 1994 Dec 30;79(7):1267–1276. doi: 10.1016/0092-8674(94)90017-5. [DOI] [PubMed] [Google Scholar]
  15. Iwamoto T., Taniguchi M., Asai N., Ohkusu K., Nakashima I., Takahashi M. cDNA cloning of mouse ret proto-oncogene and its sequence similarity to the cadherin superfamily. Oncogene. 1993 Apr;8(4):1087–1091. [PubMed] [Google Scholar]
  16. Jing S., Wen D., Yu Y., Holst P. L., Luo Y., Fang M., Tamir R., Antonio L., Hu Z., Cupples R. GDNF-induced activation of the ret protein tyrosine kinase is mediated by GDNFR-alpha, a novel receptor for GDNF. Cell. 1996 Jun 28;85(7):1113–1124. doi: 10.1016/s0092-8674(00)81311-2. [DOI] [PubMed] [Google Scholar]
  17. Kapur R. P., Sweetser D. A., Doggett B., Siebert J. R., Palmiter R. D. Intercellular signals downstream of endothelin receptor-B mediate colonization of the large intestine by enteric neuroblasts. Development. 1995 Nov;121(11):3787–3795. doi: 10.1242/dev.121.11.3787. [DOI] [PubMed] [Google Scholar]
  18. Kapur R. P., Yost C., Palmiter R. D. A transgenic model for studying development of the enteric nervous system in normal and aganglionic mice. Development. 1992 Sep;116(1):167–175. doi: 10.1242/dev.116.Supplement.167. [DOI] [PubMed] [Google Scholar]
  19. Le Douarin N. M., Teillet M. A. The migration of neural crest cells to the wall of the digestive tract in avian embryo. J Embryol Exp Morphol. 1973 Aug;30(1):31–48. [PubMed] [Google Scholar]
  20. Lin L. F., Doherty D. H., Lile J. D., Bektesh S., Collins F. GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science. 1993 May 21;260(5111):1130–1132. doi: 10.1126/science.8493557. [DOI] [PubMed] [Google Scholar]
  21. Lyonnet S., Bolino A., Pelet A., Abel L., Nihoul-Fékété C., Briard M. L., Mok-Siu V., Kaariainen H., Martucciello G., Lerone M. A gene for Hirschsprung disease maps to the proximal long arm of chromosome 10. Nat Genet. 1993 Aug;4(4):346–350. doi: 10.1038/ng0893-346. [DOI] [PubMed] [Google Scholar]
  22. Mason I. The GDNF receptor: recent progress and unanswered questions. Mol Cell Neurosci. 1996;8(2-3):112–119. doi: 10.1006/mcne.1996.0050. [DOI] [PubMed] [Google Scholar]
  23. Meijers J. H., Tibboel D., van der Kamp A. W., van Haperen-Heuts I. C., Molenaar J. C. A model for aganglionosis in the chicken embryo. J Pediatr Surg. 1989 Jun;24(6):557–561. doi: 10.1016/s0022-3468(89)80505-6. [DOI] [PubMed] [Google Scholar]
  24. Moore M. W., Klein R. D., Fariñas I., Sauer H., Armanini M., Phillips H., Reichardt L. F., Ryan A. M., Carver-Moore K., Rosenthal A. Renal and neuronal abnormalities in mice lacking GDNF. Nature. 1996 Jul 4;382(6586):76–79. doi: 10.1038/382076a0. [DOI] [PubMed] [Google Scholar]
  25. Pachnis V., Mankoo B., Costantini F. Expression of the c-ret proto-oncogene during mouse embryogenesis. Development. 1993 Dec;119(4):1005–1017. doi: 10.1242/dev.119.4.1005. [DOI] [PubMed] [Google Scholar]
  26. Passarge E. The genetics of Hirschsprung's disease. Evidence for heterogeneous etiology and a study of sixty-three families. N Engl J Med. 1967 Jan 19;276(3):138–143. doi: 10.1056/NEJM196701192760303. [DOI] [PubMed] [Google Scholar]
  27. Payette R. F., Tennyson V. M., Pomeranz H. D., Pham T. D., Rothman T. P., Gershon M. D. Accumulation of components of basal laminae: association with the failure of neural crest cells to colonize the presumptive aganglionic bowel of ls/ls mutant mice. Dev Biol. 1988 Feb;125(2):341–360. doi: 10.1016/0012-1606(88)90217-5. [DOI] [PubMed] [Google Scholar]
  28. Pichel J. G., Shen L., Sheng H. Z., Granholm A. C., Drago J., Grinberg A., Lee E. J., Huang S. P., Saarma M., Hoffer B. J. Defects in enteric innervation and kidney development in mice lacking GDNF. Nature. 1996 Jul 4;382(6586):73–76. doi: 10.1038/382073a0. [DOI] [PubMed] [Google Scholar]
  29. Pomeranz H. D., Gershon M. D. Colonization of the avian hindgut by cells derived from the sacral neural crest. Dev Biol. 1990 Feb;137(2):378–394. doi: 10.1016/0012-1606(90)90262-h. [DOI] [PubMed] [Google Scholar]
  30. Pouliot Y. Phylogenetic analysis of the cadherin superfamily. Bioessays. 1992 Nov;14(11):743–748. doi: 10.1002/bies.950141104. [DOI] [PubMed] [Google Scholar]
  31. Puffenberger E. G., Hosoda K., Washington S. S., Nakao K., deWit D., Yanagisawa M., Chakravart A. A missense mutation of the endothelin-B receptor gene in multigenic Hirschsprung's disease. Cell. 1994 Dec 30;79(7):1257–1266. doi: 10.1016/0092-8674(94)90016-7. [DOI] [PubMed] [Google Scholar]
  32. Robertson K., Mason I. Expression of ret in the chicken embryo suggests roles in regionalisation of the vagal neural tube and somites and in development of multiple neural crest and placodal lineages. Mech Dev. 1995 Nov;53(3):329–344. doi: 10.1016/0925-4773(95)00449-1. [DOI] [PubMed] [Google Scholar]
  33. Robertson K., Mason I. The GDNF-RET signalling partnership. Trends Genet. 1997 Jan;13(1):1–3. doi: 10.1016/s0168-9525(96)30113-3. [DOI] [PubMed] [Google Scholar]
  34. Romeo G., Ronchetto P., Luo Y., Barone V., Seri M., Ceccherini I., Pasini B., Bocciardi R., Lerone M., Käriäinen H. Point mutations affecting the tyrosine kinase domain of the RET proto-oncogene in Hirschsprung's disease. Nature. 1994 Jan 27;367(6461):377–378. doi: 10.1038/367377a0. [DOI] [PubMed] [Google Scholar]
  35. Rothman T. P., Le Douarin N. M., Fontaine-Pérus J. C., Gershon M. D. Developmental potential of neural crest-derived cells migrating from segments of developing quail bowel back-grafted into younger chick host embryos. Development. 1990 Jun;109(2):411–423. doi: 10.1242/dev.109.2.411. [DOI] [PubMed] [Google Scholar]
  36. Santos H., Mateus J., Leal M. J. Hirschsprung disease associated with polydactyly, unilateral renal agenesis, hypertelorism, and congenital deafness: a new autosomal recessive syndrome. J Med Genet. 1988 Mar;25(3):204–205. doi: 10.1136/jmg.25.3.204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Schuchardt A., D'Agati V., Larsson-Blomberg L., Costantini F., Pachnis V. Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature. 1994 Jan 27;367(6461):380–383. doi: 10.1038/367380a0. [DOI] [PubMed] [Google Scholar]
  38. Sánchez M. P., Silos-Santiago I., Frisén J., He B., Lira S. A., Barbacid M. Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature. 1996 Jul 4;382(6586):70–73. doi: 10.1038/382070a0. [DOI] [PubMed] [Google Scholar]
  39. Tennyson V. M., Pham T. D., Rothman T. P., Gershon M. D. Abnormalities of smooth muscle, basal laminae, and nerves in the aganglionic segments of the bowel of lethal spotted mutant mice. Anat Rec. 1986 Jul;215(3):267–281. doi: 10.1002/ar.1092150310. [DOI] [PubMed] [Google Scholar]
  40. Thiery J. P., Duband J. L., Delouvée A. Pathways and mechanisms of avian trunk neural crest cell migration and localization. Dev Biol. 1982 Oct;93(2):324–343. doi: 10.1016/0012-1606(82)90121-x. [DOI] [PubMed] [Google Scholar]
  41. Treanor J. J., Goodman L., de Sauvage F., Stone D. M., Poulsen K. T., Beck C. D., Gray C., Armanini M. P., Pollock R. A., Hefti F. Characterization of a multicomponent receptor for GDNF. Nature. 1996 Jul 4;382(6586):80–83. doi: 10.1038/382080a0. [DOI] [PubMed] [Google Scholar]
  42. Trupp M., Arenas E., Fainzilber M., Nilsson A. S., Sieber B. A., Grigoriou M., Kilkenny C., Salazar-Grueso E., Pachnis V., Arumäe U. Functional receptor for GDNF encoded by the c-ret proto-oncogene. Nature. 1996 Jun 27;381(6585):785–789. doi: 10.1038/381785a0. [DOI] [PubMed] [Google Scholar]
  43. Webb G. C., Keith C. G., Campbell N. T. Concurrent de novo interstitial deletion of band 2p22 and reciprocal translocation (3;7)(p21;q22). J Med Genet. 1988 Feb;25(2):125–127. doi: 10.1136/jmg.25.2.125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. YNTEMA C. L., HAMMOND W. S. The origin of intrinsic ganglia of trunk viscera from vagal neural crest in the chick embryo. J Comp Neurol. 1954 Oct;101(2):515–541. doi: 10.1002/cne.901010212. [DOI] [PubMed] [Google Scholar]

Articles from Gut are provided here courtesy of BMJ Publishing Group

RESOURCES