Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1995 Jul;69(7):4228–4236. doi: 10.1128/jvi.69.7.4228-4236.1995

Defective accessory genes in a human immunodeficiency virus type 1-infected long-term survivor lacking recoverable virus.

N L Michael 1, G Chang 1, L A d'Arcy 1, P K Ehrenberg 1, R Mariani 1, M P Busch 1, D L Birx 1, D H Schwartz 1
PMCID: PMC189160  PMID: 7769682

Abstract

We have been studying a patient who acquired human immunodeficiency virus (HIV) infection via a blood transfusion 13 years ago. She has remained asymptomatic since that time. The blood donor and two other recipients have all died of AIDS. Although this patient has shown persistently strong seroreactivity to HIV type 1 (HIV-1) antigens by Western blot (immunoblot), she has been continually HIV culture negative in results from multiple laboratories over the last 6 years and has a very low viral burden. Her CD4+ T-cell count has fluctuated around a mean of 399 cells per microliters, with little change in lymphocyte subset percentages. Strong cellular immune responses to HIV-1 epitopes by this patient have been demonstrated. We now report the results of an intensive molecular genetic analysis of the HIV-1 proviral quasispecies from this patient sampled over 5 years. Long terminal repeat region sequences supported the argument for normal basal and Tat-mediated promoter activities. Sequential sequencing of the nef gene revealed a low frequency (8.3%) of defective genes and a striking lack of sequence evolution. Functional analysis of predominant nef genes by both a cell surface CD4 downregulation and a viral infectivity complementation assay showed wild-type function. In contrast, sequential analysis of an amplicon containing the vif, vpr, vpu, tat1, and rev1 genes revealed the presence of inactivating mutations in 64% of the clones. These data suggest that this patient, initially infected with a virulent swarm of HIV-1, is presently infected with a more-attenuated viral quasispecies as a result of effective host immunity.

Full Text

The Full Text of this article is available as a PDF (280.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aiken C., Konner J., Landau N. R., Lenburg M. E., Trono D. Nef induces CD4 endocytosis: requirement for a critical dileucine motif in the membrane-proximal CD4 cytoplasmic domain. Cell. 1994 Mar 11;76(5):853–864. doi: 10.1016/0092-8674(94)90360-3. [DOI] [PubMed] [Google Scholar]
  2. Anderson S., Shugars D. C., Swanstrom R., Garcia J. V. Nef from primary isolates of human immunodeficiency virus type 1 suppresses surface CD4 expression in human and mouse T cells. J Virol. 1993 Aug;67(8):4923–4931. doi: 10.1128/jvi.67.8.4923-4931.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Balliet J. W., Kolson D. L., Eiger G., Kim F. M., McGann K. A., Srinivasan A., Collman R. Distinct effects in primary macrophages and lymphocytes of the human immunodeficiency virus type 1 accessory genes vpr, vpu, and nef: mutational analysis of a primary HIV-1 isolate. Virology. 1994 May 1;200(2):623–631. doi: 10.1006/viro.1994.1225. [DOI] [PubMed] [Google Scholar]
  4. Bandres J. C., Luria S., Ratner L. Regulation of human immunodeficiency virus Nef protein by phosphorylation. Virology. 1994 May 15;201(1):157–161. doi: 10.1006/viro.1994.1278. [DOI] [PubMed] [Google Scholar]
  5. Benson R. E., Sanfridson A., Ottinger J. S., Doyle C., Cullen B. R. Downregulation of cell-surface CD4 expression by simian immunodeficiency virus Nef prevents viral super infection. J Exp Med. 1993 Jun 1;177(6):1561–1566. doi: 10.1084/jem.177.6.1561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brady H. J., Pennington D. J., Miles C. G., Dzierzak E. A. CD4 cell surface downregulation in HIV-1 Nef transgenic mice is a consequence of intracellular sequestration. EMBO J. 1993 Dec 15;12(13):4923–4932. doi: 10.1002/j.1460-2075.1993.tb06186.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chen M. Y., Maldarelli F., Karczewski M. K., Willey R. L., Strebel K. Human immunodeficiency virus type 1 Vpu protein induces degradation of CD4 in vitro: the cytoplasmic domain of CD4 contributes to Vpu sensitivity. J Virol. 1993 Jul;67(7):3877–3884. doi: 10.1128/jvi.67.7.3877-3884.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chowers M. Y., Spina C. A., Kwoh T. J., Fitch N. J., Richman D. D., Guatelli J. C. Optimal infectivity in vitro of human immunodeficiency virus type 1 requires an intact nef gene. J Virol. 1994 May;68(5):2906–2914. doi: 10.1128/jvi.68.5.2906-2914.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Clark S. J., Shaw G. M. The acute retroviral syndrome and the pathogenesis of HIV-1 infection. Semin Immunol. 1993 Jun;5(3):149–155. doi: 10.1006/smim.1993.1018. [DOI] [PubMed] [Google Scholar]
  10. Cohen E. A., Dehni G., Sodroski J. G., Haseltine W. A. Human immunodeficiency virus vpr product is a virion-associated regulatory protein. J Virol. 1990 Jun;64(6):3097–3099. doi: 10.1128/jvi.64.6.3097-3099.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cohen E. A., Terwilliger E. F., Jalinoos Y., Proulx J., Sodroski J. G., Haseltine W. A. Identification of HIV-1 vpr product and function. J Acquir Immune Defic Syndr. 1990;3(1):11–18. [PubMed] [Google Scholar]
  12. Fan L., Peden K. Cell-free transmission of Vif mutants of HIV-1. Virology. 1992 Sep;190(1):19–29. doi: 10.1016/0042-6822(92)91188-z. [DOI] [PubMed] [Google Scholar]
  13. Foster J. L., Anderson S. J., Frazier A. L., Garcia J. V. Specific suppression of human CD4 surface expression by Nef from the pathogenic simian immunodeficiency virus SIVmac239open. Virology. 1994 Jun;201(2):373–379. doi: 10.1006/viro.1994.1303. [DOI] [PubMed] [Google Scholar]
  14. Gabuzda D. H., Li H., Lawrence K., Vasir B. S., Crawford K., Langhoff E. Essential role of vif in establishing productive HIV-1 infection in peripheral blood T lymphocytes and monocyte/macrophages. J Acquir Immune Defic Syndr. 1994 Sep;7(9):908–915. [PubMed] [Google Scholar]
  15. Geraghty R. J., Panganiban A. T. Human immunodeficiency virus type 1 Vpu has a CD4- and an envelope glycoprotein-independent function. J Virol. 1993 Jul;67(7):4190–4194. doi: 10.1128/jvi.67.7.4190-4194.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Greenough T. C., Somasundaran M., Brettler D. B., Hesselton R. M., Alimenti A., Kirchhoff F., Panicali D., Sullivan J. L. Normal immune function and inability to isolate virus in culture in an individual with long-term human immunodeficiency virus type 1 infection. AIDS Res Hum Retroviruses. 1994 Apr;10(4):395–403. doi: 10.1089/aid.1994.10.395. [DOI] [PubMed] [Google Scholar]
  17. Greenway A. L., McPhee D. A., Grgacic E., Hewish D., Lucantoni A., Macreadie I., Azad A. Nef 27, but not the Nef 25 isoform of human immunodeficiency virus-type 1 pNL4.3 down-regulates surface CD4 and IL-2R expression in peripheral blood mononuclear cells and transformed T cells. Virology. 1994 Jan;198(1):245–256. doi: 10.1006/viro.1994.1027. [DOI] [PubMed] [Google Scholar]
  18. Huang Y., Zhang L., Ho D. D. Characterization of nef sequences in long-term survivors of human immunodeficiency virus type 1 infection. J Virol. 1995 Jan;69(1):93–100. doi: 10.1128/jvi.69.1.93-100.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Höglund S., Ohagen A., Lawrence K., Gabuzda D. Role of vif during packing of the core of HIV-1. Virology. 1994 Jun;201(2):349–355. doi: 10.1006/viro.1994.1300. [DOI] [PubMed] [Google Scholar]
  20. Inoue M., Koga Y., Djordjijevic D., Fukuma T., Reddy E. P., Yokoyama M. M., Sagawa K. Down-regulation of CD4 molecules by the expression of Nef: a quantitative analysis of CD4 antigens on the cell surfaces. Int Immunol. 1993 Sep;5(9):1067–1073. doi: 10.1093/intimm/5.9.1067. [DOI] [PubMed] [Google Scholar]
  21. Keet I. P., Krijnen P., Koot M., Lange J. M., Miedema F., Goudsmit J., Coutinho R. A. Predictors of rapid progression to AIDS in HIV-1 seroconverters. AIDS. 1993 Jan;7(1):51–57. doi: 10.1097/00002030-199301000-00008. [DOI] [PubMed] [Google Scholar]
  22. Keet I. P., Krol A., Klein M. R., Veugelers P., de Wit J., Roos M., Koot M., Goudsmit J., Miedema F., Coutinho R. A. Characteristics of long-term asymptomatic infection with human immunodeficiency virus type 1 in men with normal and low CD4+ cell counts. J Infect Dis. 1994 Jun;169(6):1236–1243. doi: 10.1093/infdis/169.6.1236. [DOI] [PubMed] [Google Scholar]
  23. Kestler H. W., 3rd, Ringler D. J., Mori K., Panicali D. L., Sehgal P. K., Daniel M. D., Desrosiers R. C. Importance of the nef gene for maintenance of high virus loads and for development of AIDS. Cell. 1991 May 17;65(4):651–662. doi: 10.1016/0092-8674(91)90097-i. [DOI] [PubMed] [Google Scholar]
  24. Kimpton J., Emerman M. Detection of replication-competent and pseudotyped human immunodeficiency virus with a sensitive cell line on the basis of activation of an integrated beta-galactosidase gene. J Virol. 1992 Apr;66(4):2232–2239. doi: 10.1128/jvi.66.4.2232-2239.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Klimkait T., Strebel K., Hoggan M. D., Martin M. A., Orenstein J. M. The human immunodeficiency virus type 1-specific protein vpu is required for efficient virus maturation and release. J Virol. 1990 Feb;64(2):621–629. doi: 10.1128/jvi.64.2.621-629.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lavallée C., Yao X. J., Ladha A., Göttlinger H., Haseltine W. A., Cohen E. A. Requirement of the Pr55gag precursor for incorporation of the Vpr product into human immunodeficiency virus type 1 viral particles. J Virol. 1994 Mar;68(3):1926–1934. doi: 10.1128/jvi.68.3.1926-1934.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Learmont J., Tindall B., Evans L., Cunningham A., Cunningham P., Wells J., Penny R., Kaldor J., Cooper D. A. Long-term symptomless HIV-1 infection in recipients of blood products from a single donor. Lancet. 1992 Oct 10;340(8824):863–867. doi: 10.1016/0140-6736(92)93281-q. [DOI] [PubMed] [Google Scholar]
  28. Lee T. H., Sheppard H. W., Reis M., Dondero D., Osmond D., Busch M. P. Circulating HIV-1-infected cell burden from seroconversion to AIDS: importance of postseroconversion viral load on disease course. J Acquir Immune Defic Syndr. 1994 Apr;7(4):381–388. [PubMed] [Google Scholar]
  29. Lenburg M. E., Landau N. R. Vpu-induced degradation of CD4: requirement for specific amino acid residues in the cytoplasmic domain of CD4. J Virol. 1993 Dec;67(12):7238–7245. doi: 10.1128/jvi.67.12.7238-7245.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Levy D. N., Refaeli Y., MacGregor R. R., Weiner D. B. Serum Vpr regulates productive infection and latency of human immunodeficiency virus type 1. Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):10873–10877. doi: 10.1073/pnas.91.23.10873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Levy J. A. HIV pathogenesis and long-term survival. AIDS. 1993 Nov;7(11):1401–1410. doi: 10.1097/00002030-199311000-00001. [DOI] [PubMed] [Google Scholar]
  32. Lifson A. R., Buchbinder S. P., Sheppard H. W., Mawle A. C., Wilber J. C., Stanley M., Hart C. E., Hessol N. A., Holmberg S. D. Long-term human immunodeficiency virus infection in asymptomatic homosexual and bisexual men with normal CD4+ lymphocyte counts: immunologic and virologic characteristics. J Infect Dis. 1991 May;163(5):959–965. doi: 10.1093/infdis/163.5.959. [DOI] [PubMed] [Google Scholar]
  33. Ma X. Y., Sova P., Chao W., Volsky D. J. Cysteine residues in the Vif protein of human immunodeficiency virus type 1 are essential for viral infectivity. J Virol. 1994 Mar;68(3):1714–1720. doi: 10.1128/jvi.68.3.1714-1720.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Mariani R., Skowronski J. CD4 down-regulation by nef alleles isolated from human immunodeficiency virus type 1-infected individuals. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5549–5553. doi: 10.1073/pnas.90.12.5549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Michael N. L., Burke D. S. Natural history of human immunodeficiency virus infection. Dermatol Clin. 1991 Jul;9(3):429–441. [PubMed] [Google Scholar]
  36. Michael N. L., D'Arcy L., Ehrenberg P. K., Redfield R. R. Naturally occurring genotypes of the human immunodeficiency virus type 1 long terminal repeat display a wide range of basal and Tat-induced transcriptional activities. J Virol. 1994 May;68(5):3163–3174. doi: 10.1128/jvi.68.5.3163-3174.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Michael N. L., Mo T., Merzouki A., O'Shaughnessy M., Oster C., Burke D. S., Redfield R. R., Birx D. L., Cassol S. A. Human immunodeficiency virus type 1 cellular RNA load and splicing patterns predict disease progression in a longitudinally studied cohort. J Virol. 1995 Mar;69(3):1868–1877. doi: 10.1128/jvi.69.3.1868-1877.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Miller M. D., Warmerdam M. T., Gaston I., Greene W. C., Feinberg M. B. The human immunodeficiency virus-1 nef gene product: a positive factor for viral infection and replication in primary lymphocytes and macrophages. J Exp Med. 1994 Jan 1;179(1):101–113. doi: 10.1084/jem.179.1.101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Miller M. D., Warmerdam M. T., Page K. A., Feinberg M. B., Greene W. C. Expression of the human immunodeficiency virus type 1 (HIV-1) nef gene during HIV-1 production increases progeny particle infectivity independently of gp160 or viral entry. J Virol. 1995 Jan;69(1):579–584. doi: 10.1128/jvi.69.1.579-584.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Niederman T. M., Hastings W. R., Ratner L. Myristoylation-enhanced binding of the HIV-1 Nef protein to T cell skeletal matrix. Virology. 1993 Nov;197(1):420–425. doi: 10.1006/viro.1993.1605. [DOI] [PubMed] [Google Scholar]
  41. Ogawa K., Shibata R., Kiyomasu T., Higuchi I., Kishida Y., Ishimoto A., Adachi A. Mutational analysis of the human immunodeficiency virus vpr open reading frame. J Virol. 1989 Sep;63(9):4110–4114. doi: 10.1128/jvi.63.9.4110-4114.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Pantaleo G., Graziosi C., Fauci A. S. New concepts in the immunopathogenesis of human immunodeficiency virus infection. N Engl J Med. 1993 Feb 4;328(5):327–335. doi: 10.1056/NEJM199302043280508. [DOI] [PubMed] [Google Scholar]
  43. Paxton W., Connor R. I., Landau N. R. Incorporation of Vpr into human immunodeficiency virus type 1 virions: requirement for the p6 region of gag and mutational analysis. J Virol. 1993 Dec;67(12):7229–7237. doi: 10.1128/jvi.67.12.7229-7237.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Purcell D. F., Martin M. A. Alternative splicing of human immunodeficiency virus type 1 mRNA modulates viral protein expression, replication, and infectivity. J Virol. 1993 Nov;67(11):6365–6378. doi: 10.1128/jvi.67.11.6365-6378.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Rappaport J., Lee S. J., Khalili K., Wong-Staal F. The acidic amino-terminal region of the HIV-1 Tat protein constitutes an essential activating domain. New Biol. 1989 Oct;1(1):101–110. [PubMed] [Google Scholar]
  46. Ratner L., Haseltine W., Patarca R., Livak K. J., Starcich B., Josephs S. F., Doran E. R., Rafalski J. A., Whitehorn E. A., Baumeister K. Complete nucleotide sequence of the AIDS virus, HTLV-III. Nature. 1985 Jan 24;313(6000):277–284. doi: 10.1038/313277a0. [DOI] [PubMed] [Google Scholar]
  47. Sakai H., Shibata R., Sakuragi J., Sakuragi S., Kawamura M., Adachi A. Cell-dependent requirement of human immunodeficiency virus type 1 Vif protein for maturation of virus particles. J Virol. 1993 Mar;67(3):1663–1666. doi: 10.1128/jvi.67.3.1663-1666.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Saksela K., Cheng G., Baltimore D. Proline-rich (PxxP) motifs in HIV-1 Nef bind to SH3 domains of a subset of Src kinases and are required for the enhanced growth of Nef+ viruses but not for down-regulation of CD4. EMBO J. 1995 Feb 1;14(3):484–491. doi: 10.1002/j.1460-2075.1995.tb07024.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Schnittman S. M., Fauci A. S. Human immunodeficiency virus and acquired immunodeficiency syndrome: an update. Adv Intern Med. 1994;39:305–355. [PubMed] [Google Scholar]
  50. Schubert U., Strebel K. Differential activities of the human immunodeficiency virus type 1-encoded Vpu protein are regulated by phosphorylation and occur in different cellular compartments. J Virol. 1994 Apr;68(4):2260–2271. doi: 10.1128/jvi.68.4.2260-2271.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Schwartz D., Sharma U., Busch M., Weinhold K., Matthews T., Lieberman J., Birx D., Farzedagen H., Margolick J., Quinn T. Absence of recoverable infectious virus and unique immune responses in an asymptomatic HIV+ long-term survivor. AIDS Res Hum Retroviruses. 1994 Dec;10(12):1703–1711. doi: 10.1089/aid.1994.10.1703. [DOI] [PubMed] [Google Scholar]
  52. Sheppard H. W., Lang W., Ascher M. S., Vittinghoff E., Winkelstein W. The characterization of non-progressors: long-term HIV-1 infection with stable CD4+ T-cell levels. AIDS. 1993 Sep;7(9):1159–1166. [PubMed] [Google Scholar]
  53. Skowronski J., Parks D., Mariani R. Altered T cell activation and development in transgenic mice expressing the HIV-1 nef gene. EMBO J. 1993 Feb;12(2):703–713. doi: 10.1002/j.1460-2075.1993.tb05704.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Strebel K., Klimkait T., Maldarelli F., Martin M. A. Molecular and biochemical analyses of human immunodeficiency virus type 1 vpu protein. J Virol. 1989 Sep;63(9):3784–3791. doi: 10.1128/jvi.63.9.3784-3791.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Terwilliger E. F., Cohen E. A., Lu Y. C., Sodroski J. G., Haseltine W. A. Functional role of human immunodeficiency virus type 1 vpu. Proc Natl Acad Sci U S A. 1989 Jul;86(13):5163–5167. doi: 10.1073/pnas.86.13.5163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Vincent M. J., Raja N. U., Jabbar M. A. Human immunodeficiency virus type 1 Vpu protein induces degradation of chimeric envelope glycoproteins bearing the cytoplasmic and anchor domains of CD4: role of the cytoplasmic domain in Vpu-induced degradation in the endoplasmic reticulum. J Virol. 1993 Sep;67(9):5538–5549. doi: 10.1128/jvi.67.9.5538-5549.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Wieland U., Hartmann J., Suhr H., Salzberger B., Eggers H. J., Kühn J. E. In vivo genetic variability of the HIV-1 vif gene. Virology. 1994 Aug 15;203(1):43–51. doi: 10.1006/viro.1994.1453. [DOI] [PubMed] [Google Scholar]
  58. Willey R. L., Buckler-White A., Strebel K. Sequences present in the cytoplasmic domain of CD4 are necessary and sufficient to confer sensitivity to the human immunodeficiency virus type 1 Vpu protein. J Virol. 1994 Feb;68(2):1207–1212. doi: 10.1128/jvi.68.2.1207-1212.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Willey R. L., Maldarelli F., Martin M. A., Strebel K. Human immunodeficiency virus type 1 Vpu protein induces rapid degradation of CD4. J Virol. 1992 Dec;66(12):7193–7200. doi: 10.1128/jvi.66.12.7193-7200.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Yuan X., Matsuda Z., Matsuda M., Essex M., Lee T. H. Human immunodeficiency virus vpr gene encodes a virion-associated protein. AIDS Res Hum Retroviruses. 1990 Nov;6(11):1265–1271. doi: 10.1089/aid.1990.6.1265. [DOI] [PubMed] [Google Scholar]
  61. Zwart G., van der Hoek L., Valk M., Cornelissen M. T., Baan E., Dekker J., Koot M., Kuiken C. L., Goudsmit J. Antibody responses to HIV-1 envelope and gag epitopes in HIV-1 seroconverters with rapid versus slow disease progression. Virology. 1994 Jun;201(2):285–293. doi: 10.1006/viro.1994.1293. [DOI] [PubMed] [Google Scholar]
  62. von Schwedler U., Song J., Aiken C., Trono D. Vif is crucial for human immunodeficiency virus type 1 proviral DNA synthesis in infected cells. J Virol. 1993 Aug;67(8):4945–4955. doi: 10.1128/jvi.67.8.4945-4955.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES