Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1995 Jul;69(7):4357–4363. doi: 10.1128/jvi.69.7.4357-4363.1995

Evidence that measles virus hemagglutinin initiates modulation of leukocyte function-associated antigen 1 expression.

A R Nagendra 1, C W Smith 1, P R Wyde 1
PMCID: PMC189176  PMID: 7769697

Abstract

Measles virus (MV), human immunodeficiency virus, Epstein-Barr virus, and other leukotropic viruses can modulate the expression of leukocyte function antigen 1 (LFA-1) on the surface of infected and nearby leukocytes. This ability to induce changes in LFA-1 expression may play an important role in the pathogenesis of these viruses. However, the mechanism(s) involved in virus-mediated regulation of LFA-1 is unknown. Evidence is presented in this report that it is the MV hemagglutinin (H) protein that initiates up-regulation of LFA-1 expression in leukocyte cultures infected with this virus. Indeed, comparison of the abilities of different MV strains to modulate LFA-1 expression, examination of published nucleotide sequences for the H proteins of different vaccine strains, and competitive inhibition assays using oligopeptides homologous or heterologous to a region of the H protein gene encompassing amino acid 116 (from the amino terminus) all suggest that it is this portion of the H protein that is responsible for MV-induced alteration of LFA-1. These comparisons also support the hypothesis that there is a relationship between the abilities of different MV strains to alter LFA-1 expression and their pathogenic potentials.

Full Text

The Full Text of this article is available as a PDF (336.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aaby P., Jensen T. G., Hansen H. L., Kristiansen H., Thårup J., Poulsen A., Sodemann M., Jakobsen M., Knudsen K., Clotilde da Silva M. Trial of high-dose Edmonston-Zagreb measles vaccine in Guinea-Bissau: protective efficacy. Lancet. 1988 Oct 8;2(8615):809–811. doi: 10.1016/s0140-6736(88)92780-8. [DOI] [PubMed] [Google Scholar]
  2. Aaby P., Knudsen K., Whittle H., Lisse I. M., Thaarup J., Poulsen A., Sodemann M., Jakobsen M., Brink L., Gansted U. Long-term survival after Edmonston-Zagreb measles vaccination in Guinea-Bissau: increased female mortality rate. J Pediatr. 1993 Jun;122(6):904–908. doi: 10.1016/s0022-3476(09)90015-4. [DOI] [PubMed] [Google Scholar]
  3. Attibele N., Wyde P. R., Trial J., Smole S. C., Smith C. W., Rossen R. D. Measles virus-induced changes in leukocyte function antigen 1 expression and leukocyte aggregation: possible role in measles virus pathogenesis. J Virol. 1993 Feb;67(2):1075–1079. doi: 10.1128/jvi.67.2.1075-1079.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barkin R. M. Measles mortality. Analysis of the primary cause of death. Am J Dis Child. 1975 Mar;129(3):307–309. doi: 10.1001/archpedi.1975.02120400019004. [DOI] [PubMed] [Google Scholar]
  5. Böyum A. Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest Suppl. 1968;97:77–89. [PubMed] [Google Scholar]
  6. CASCARDO M. R., KARZON D. T. MEASLES VIRUS GIANT CELL INDUCING FACTOR (FUSION FACTOR). Virology. 1965 Jun;26:311–325. doi: 10.1016/0042-6822(65)90279-5. [DOI] [PubMed] [Google Scholar]
  7. Drillien R., Spehner D., Kirn A., Giraudon P., Buckland R., Wild F., Lecocq J. P. Protection of mice from fatal measles encephalitis by vaccination with vaccinia virus recombinants encoding either the hemagglutinin or the fusion protein. Proc Natl Acad Sci U S A. 1988 Feb;85(4):1252–1256. doi: 10.1073/pnas.85.4.1252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fauci A. S. The human immunodeficiency virus: infectivity and mechanisms of pathogenesis. Science. 1988 Feb 5;239(4840):617–622. doi: 10.1126/science.3277274. [DOI] [PubMed] [Google Scholar]
  9. Hildreth J. E., Orentas R. J. Involvement of a leukocyte adhesion receptor (LFA-1) in HIV-induced syncytium formation. Science. 1989 Jun 2;244(4908):1075–1078. doi: 10.1126/science.2543075. [DOI] [PubMed] [Google Scholar]
  10. Hynes R. O. Integrins: a family of cell surface receptors. Cell. 1987 Feb 27;48(4):549–554. doi: 10.1016/0092-8674(87)90233-9. [DOI] [PubMed] [Google Scholar]
  11. Johnson R. T. The pathogenesis of acute viral encephalitis and postinfectious encephalomyelitis. J Infect Dis. 1987 Mar;155(3):359–364. doi: 10.1093/infdis/155.3.359. [DOI] [PubMed] [Google Scholar]
  12. Joseph B. S., Lampert P. W., Oldstone M. B. Replication and persistence of measles virus in defined subpopulations of human leukocytes. J Virol. 1975 Dec;16(6):1638–1649. doi: 10.1128/jvi.16.6.1638-1649.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kansas G. S., Tedder T. F. Transmembrane signals generated through MHC class II, CD19, CD20, CD39, and CD40 antigens induce LFA-1-dependent and independent adhesion in human B cells through a tyrosine kinase-dependent pathway. J Immunol. 1991 Dec 15;147(12):4094–4102. [PubMed] [Google Scholar]
  14. Keizer G. D., Borst J., Figdor C. G., Spits H., Miedema F., Terhorst C., De Vries J. E. Biochemical and functional characteristics of the human leukocyte membrane antigen family LFA-1, Mo-1 and p150,95. Eur J Immunol. 1985 Nov;15(11):1142–1148. doi: 10.1002/eji.1830151114. [DOI] [PubMed] [Google Scholar]
  15. León M. E., Ward B., Kanashiro R., Hernández H., Berry S., Vaisberg A., Escamilla J., Campos M., Bellomo S., Azabache V. Immunologic parameters 2 years after high-titer measles immunization in Peruvian children. J Infect Dis. 1993 Nov;168(5):1097–1104. doi: 10.1093/infdis/168.5.1097. [DOI] [PubMed] [Google Scholar]
  16. Lotan C., Matoth I., Korman S. H. Liver involvement in measles. Eur J Pediatr. 1986 Apr;145(1-2):160–161. doi: 10.1007/BF00441888. [DOI] [PubMed] [Google Scholar]
  17. Mackay C. R., Imhof B. A. Cell adhesion in the immune system. Immunol Today. 1993 Mar;14(3):99–102. doi: 10.1016/0167-5699(93)90205-Y. [DOI] [PubMed] [Google Scholar]
  18. Markowitz L. E., Sepulveda J., Diaz-Ortega J. L., Valdespino J. L., Albrecht P., Zell E. R., Stewart J., Zarate M. L., Bernier R. H. Immunization of six-month-old infants with different doses of Edmonston-Zagreb and Schwarz measles vaccines. N Engl J Med. 1990 Mar 1;322(9):580–587. doi: 10.1056/NEJM199003013220903. [DOI] [PubMed] [Google Scholar]
  19. McChesney M. B., Oldstone M. B. Virus-induced immunosuppression: infections with measles virus and human immunodeficiency virus. Adv Immunol. 1989;45:335–380. doi: 10.1016/s0065-2776(08)60696-3. [DOI] [PubMed] [Google Scholar]
  20. Modai D., Pik A., Marmor Z., Weissgarten J., Cohen N., Averbukh Z., Golik A., Rosenmann E. Liver dysfunction in measles, liver biopsy findings. Dig Dis Sci. 1986 Mar;31(3):333–333. doi: 10.1007/BF01318127. [DOI] [PubMed] [Google Scholar]
  21. Moench T. R., Griffin D. E., Obriecht C. R., Vaisberg A. J., Johnson R. T. Acute measles in patients with and without neurological involvement: distribution of measles virus antigen and RNA. J Infect Dis. 1988 Aug;158(2):433–442. doi: 10.1093/infdis/158.2.433. [DOI] [PubMed] [Google Scholar]
  22. PERIES J. R., CHANY C. Studies on measles viral hemagglutination. Proc Soc Exp Biol Med. 1962 Jul;110:477–482. doi: 10.3181/00379727-110-27555. [DOI] [PubMed] [Google Scholar]
  23. Patarroyo M. Leukocyte adhesion in host defense and tissue injury. Clin Immunol Immunopathol. 1991 Sep;60(3):333–348. doi: 10.1016/0090-1229(91)90091-n. [DOI] [PubMed] [Google Scholar]
  24. Patarroyo M., Prieto J., Ernberg I., Gahmberg C. G. Absence, or low expression, of leukocyte adhesion molecules CD11 and CD18 on Burkitt lymphoma cells. Int J Cancer. 1988 Jun 15;41(6):901–907. doi: 10.1002/ijc.2910410623. [DOI] [PubMed] [Google Scholar]
  25. Rima B. K. The proteins of morbilliviruses. J Gen Virol. 1983 Jun;64(Pt 6):1205–1219. doi: 10.1099/0022-1317-64-6-1205. [DOI] [PubMed] [Google Scholar]
  26. Rincon J., Prieto J., Patarroyo M. Expression of integrins and other adhesion molecules in Epstein-Barr virus-transformed B lymphoblastoid cells and Burkitt's lymphoma cells. Int J Cancer. 1992 May 28;51(3):452–458. doi: 10.1002/ijc.2910510319. [DOI] [PubMed] [Google Scholar]
  27. Rossen R. D., Smith C. W., Laughter A. H., Noonan C. A., Anderson D. C., McShan W. M., Hurvitz M. Y., Orson F. M. HIV-1-stimulated expression of CD11/CD18 integrins and ICAM-1: a possible mechanism for extravascular dissemination of HIV-1-infected cells. Trans Assoc Am Physicians. 1989;102:117–130. [PubMed] [Google Scholar]
  28. Rota J. S., Wang Z. D., Rota P. A., Bellini W. J. Comparison of sequences of the H, F, and N coding genes of measles virus vaccine strains. Virus Res. 1994 Mar;31(3):317–330. doi: 10.1016/0168-1702(94)90025-6. [DOI] [PubMed] [Google Scholar]
  29. White R. G., Boyd J. F. The effect of measles on the thymus and other lymphoid tissues. Clin Exp Immunol. 1973 Mar;13(3):343–357. [PMC free article] [PubMed] [Google Scholar]
  30. Whittle H. C., Campbell H., Rahman S., Armstrong J. R. Antibody persistence in Gambian children after high-dose Edmonston-Zagreb measles vaccine. Lancet. 1990 Oct 27;336(8722):1046–1048. doi: 10.1016/0140-6736(90)92501-8. [DOI] [PubMed] [Google Scholar]
  31. Wyde P. R., Ambrose M. W., Voss T. G., Meyer H. L., Gilbert B. E. Measles virus replication in lungs of hispid cotton rats after intranasal inoculation. Proc Soc Exp Biol Med. 1992 Oct;201(1):80–87. doi: 10.3181/00379727-201-43483. [DOI] [PubMed] [Google Scholar]
  32. Wyde P. R., Attibele N. R., Kemp W. L. Infection of leucocytes by measles vaccine viruses Edmonston-Zagreb and Enders-Moraten has different consequences: potential mechanism for increased vaccine efficacy or aberrant activity in field trials. Vaccine. 1994 Jun;12(8):715–722. doi: 10.1016/0264-410x(94)90221-6. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES