Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1995 Jul;69(7):4484–4488. doi: 10.1128/jvi.69.7.4484-4488.1995

Genetic relatedness of the caliciviruses: San Miguel sea lion and vesicular exanthema of swine viruses constitute a single genotype within the Caliciviridae.

J D Neill 1, R F Meyer 1, B S Seal 1
PMCID: PMC189190  PMID: 7769708

Abstract

The San Miguel sea lion viruses (SMSV) and vesicular exanthema of swine viruses (VESV) are related morphologically and antigenically, but little has been done to determine their genotypic relationship to each other and to other caliciviruses. To examine this relationship, reverse transcriptase PCRs were performed by using oligonucleotide primer sets designed to amplify portions of the 2C RNA helicase-like and RNA-dependent RNA polymerase regions with total cellular RNA purified from virus-infected cell cultures as a template. The 2C RNA helicase primers directed the amplification of this region from eight SMSV serotypes, five VESV serotypes, and four related viruses. The RNA polymerase primer sets amplified products from all these viruses except one. Phylogenetic comparison of the caliciviruses demonstrated that SMSV, VESV, and four related viruses are closely related while being distinct from feline calicivirus, the human caliciviruses (small, round-structured viruses), and rabbit hemorrhagic disease virus and that they should be classified as a single genotype within the Caliciviridae.

Full Text

The Full Text of this article is available as a PDF (184.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Almond N., Jones S., Heath A. B., Kitchin P. A. The assessment of nucleotide sequence diversity by the polymerase chain reaction is highly reproducible. J Virol Methods. 1992 Oct;40(1):37–44. doi: 10.1016/0166-0934(92)90005-x. [DOI] [PubMed] [Google Scholar]
  2. Ando T., Mulders M. N., Lewis D. C., Estes M. K., Monroe S. S., Glass R. I. Comparison of the polymerase region of small round structured virus strains previously classified in three antigenic types by solid-phase immune electron microscopy. Arch Virol. 1994;135(1-2):217–226. doi: 10.1007/BF01309781. [DOI] [PubMed] [Google Scholar]
  3. Carter M. J., Milton I. D., Meanger J., Bennett M., Gaskell R. M., Turner P. C. The complete nucleotide sequence of a feline calicivirus. Virology. 1992 Sep;190(1):443–448. doi: 10.1016/0042-6822(92)91231-i. [DOI] [PubMed] [Google Scholar]
  4. Cubitt W. D., Jiang X. J., Wang J., Estes M. K. Sequence similarity of human caliciviruses and small round structured viruses. J Med Virol. 1994 Jul;43(3):252–258. doi: 10.1002/jmv.1890430311. [DOI] [PubMed] [Google Scholar]
  5. Ferris N. P., Oxtoby J. M. An enzyme-linked immunosorbent assay for the detection of marine caliciviruses. Vet Microbiol. 1994 Nov;42(2-3):229–238. doi: 10.1016/0378-1135(94)90021-3. [DOI] [PubMed] [Google Scholar]
  6. Green J., Norcott J. P., Lewis D., Arnold C., Brown D. W. Norwalk-like viruses: demonstration of genomic diversity by polymerase chain reaction. J Clin Microbiol. 1993 Nov;31(11):3007–3012. doi: 10.1128/jcm.31.11.3007-3012.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Green S. M., Dingle K. E., Lambden P. R., Caul E. O., Ashley C. R., Clarke I. N. Human enteric Caliciviridae: a new prevalent small round-structured virus group defined by RNA-dependent RNA polymerase and capsid diversity. J Gen Virol. 1994 Aug;75(Pt 8):1883–1888. doi: 10.1099/0022-1317-75-8-1883. [DOI] [PubMed] [Google Scholar]
  8. Jiang X., Wang M., Wang K., Estes M. K. Sequence and genomic organization of Norwalk virus. Virology. 1993 Jul;195(1):51–61. doi: 10.1006/viro.1993.1345. [DOI] [PubMed] [Google Scholar]
  9. Lambden P. R., Caul E. O., Ashley C. R., Clarke I. N. Sequence and genome organization of a human small round-structured (Norwalk-like) virus. Science. 1993 Jan 22;259(5094):516–519. doi: 10.1126/science.8380940. [DOI] [PubMed] [Google Scholar]
  10. Lew J. F., Kapikian A. Z., Valdesuso J., Green K. Y. Molecular characterization of Hawaii virus and other Norwalk-like viruses: evidence for genetic polymorphism among human caliciviruses. J Infect Dis. 1994 Sep;170(3):535–542. doi: 10.1093/infdis/170.3.535. [DOI] [PubMed] [Google Scholar]
  11. Meyers G., Wirblich C., Thiel H. J. Rabbit hemorrhagic disease virus--molecular cloning and nucleotide sequencing of a calicivirus genome. Virology. 1991 Oct;184(2):664–676. doi: 10.1016/0042-6822(91)90436-f. [DOI] [PubMed] [Google Scholar]
  12. Milton I. D., Turner J., Teelan A., Gaskell R., Turner P. C., Carter M. J. Location of monoclonal antibody binding sites in the capsid protein of feline calicivirus. J Gen Virol. 1992 Sep;73(Pt 9):2435–2439. doi: 10.1099/0022-1317-73-9-2435. [DOI] [PubMed] [Google Scholar]
  13. Neill J. D. Nucleotide sequence of a region of the feline calicivirus genome which encodes picornavirus-like RNA-dependent RNA polymerase, cysteine protease and 2C polypeptides. Virus Res. 1990 Nov;17(3):145–160. doi: 10.1016/0168-1702(90)90061-f. [DOI] [PubMed] [Google Scholar]
  14. Neill J. D. Nucleotide sequence of the capsid protein gene of two serotypes of San Miguel sea lion virus: identification of conserved and non-conserved amino acid sequences among calicivirus capsid proteins. Virus Res. 1992 Jul;24(2):211–222. doi: 10.1016/0168-1702(92)90008-w. [DOI] [PubMed] [Google Scholar]
  15. Neill J. D., Reardon I. M., Heinrikson R. L. Nucleotide sequence and expression of the capsid protein gene of feline calicivirus. J Virol. 1991 Oct;65(10):5440–5447. doi: 10.1128/jvi.65.10.5440-5447.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Neill J. D., Seal B. S. Development of PCR primers for specific amplification of two distinct regions of the genomes of San Miguel sea-lion and vesicular exanthema of swine viruses. Mol Cell Probes. 1995 Feb;9(1):33–37. doi: 10.1016/s0890-8508(95)90962-1. [DOI] [PubMed] [Google Scholar]
  17. Seal B. S. Analysis of capsid protein gene variation among divergent isolates of feline calicivirus. Virus Res. 1994 Jul;33(1):39–53. doi: 10.1016/0168-1702(94)90016-7. [DOI] [PubMed] [Google Scholar]
  18. Seal B. S., Ridpath J. F., Mengeling W. L. Analysis of feline calicivirus capsid protein genes: identification of variable antigenic determinant regions of the protein. J Gen Virol. 1993 Nov;74(Pt 11):2519–2524. doi: 10.1099/0022-1317-74-11-2519. [DOI] [PubMed] [Google Scholar]
  19. Smith A. W., Akers T. G., Madin S. H., Vedros N. A. San Miguel sea lion virus isolation, preliminary characterization and relationship to vesicular exanthema of swine virus. Nature. 1973 Jul 13;244(5411):108–110. doi: 10.1038/244108a0. [DOI] [PubMed] [Google Scholar]
  20. Smith A. W., Latham A. B. Prevalence of vesicular exanthema of swine antibodies among feral mammals associated with the southern California coastal zones. Am J Vet Res. 1978 Feb;39(2):291–296. [PubMed] [Google Scholar]
  21. Smith A. W., Mattson D. E., Skilling D. E., Schmitz J. A. Isolation and partial characterization of a calicivirus from calves. Am J Vet Res. 1983 May;44(5):851–855. [PubMed] [Google Scholar]
  22. Smith A. W., Skilling D. E., Dardiri A. H., Latham A. B. Calicivirus pathogenic for swine: a new serotype isolated from opaleye Girella nigricans, an ocean fish. Science. 1980 Aug 22;209(4459):940–941. doi: 10.1126/science.7403862. [DOI] [PubMed] [Google Scholar]
  23. Smith A. W., Skilling D. E., Ensley P. K., Benirschke K., Lester T. L. Calicivirus isolation and persistence in a pygmy chimpanzee (Pan paniscus). Science. 1983 Jul 1;221(4605):79–81. doi: 10.1126/science.6304880. [DOI] [PubMed] [Google Scholar]
  24. Smith A. W., Skilling D. E., Ridgway S. Calicivirus-induced vesicular disease in cetaceans and probable interspecies transmission. J Am Vet Med Assoc. 1983 Dec 1;183(11):1223–1225. [PubMed] [Google Scholar]
  25. Smith A. W., Skilling D. E., Ritchie A. E. Immunoelectron microscopic comparisons of caliciviruses. Am J Vet Res. 1978 Sep;39(9):1531–1533. [PubMed] [Google Scholar]
  26. Soergel M. E., Schaffer F. L., Sawyer J. C., Prato C. M. Assay of antibodies to caliciviruses by radioimmune precipitation using staphylococcal protein A as IgG adsorbent. Arch Virol. 1978;57(3):271–282. doi: 10.1007/BF01315091. [DOI] [PubMed] [Google Scholar]
  27. Wang J., Jiang X., Madore H. P., Gray J., Desselberger U., Ando T., Seto Y., Oishi I., Lew J. F., Green K. Y. Sequence diversity of small, round-structured viruses in the Norwalk virus group. J Virol. 1994 Sep;68(9):5982–5990. doi: 10.1128/jvi.68.9.5982-5990.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wirblich C., Meyers G., Ohlinger V. F., Capucci L., Eskens U., Haas B., Thiel H. J. European brown hare syndrome virus: relationship to rabbit hemorrhagic disease virus and other caliciviruses. J Virol. 1994 Aug;68(8):5164–5173. doi: 10.1128/jvi.68.8.5164-5173.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES