Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1995 Jul;69(7):4500–4505. doi: 10.1128/jvi.69.7.4500-4505.1995

Processing and evolution of the N-terminal region of the arterivirus replicase ORF1a protein: identification of two papainlike cysteine proteases.

J A den Boon 1, K S Faaberg 1, J J Meulenberg 1, A L Wassenaar 1, P G Plagemann 1, A E Gorbalenya 1, E J Snijder 1
PMCID: PMC189193  PMID: 7769711

Abstract

Two adjacent papainlike cysteine protease (PCP) domains, PCP alpha and PCP beta, were identified in the N-terminal region of the open reading frame 1a replicase proteins of the arteriviruses porcine reproductive and respiratory syndrome virus and lactate dehydrogenase-elevating virus. The replicase of the related virus equine arteritis virus contains only one active PCP in the corresponding region. Sequence comparison revealed that the equine arteritis virus PCP alpha counterpart probably was inactivated by loss of its catalytic Cys residue. For both porcine reproductive and respiratory syndrome virus and lactate dehydrogenase-elevating virus, the generation of two processing products, nsp1 alpha and nsp1 beta, was demonstrated by in vitro translation. Site-directed mutagenesis and sequence comparison were used to identify the putative active-site residues of the PCP alpha and PCP beta protease domains and to show that they mediate the nsp1 alpha/1 beta and nsp1 beta/2 cleavages, respectively.

Full Text

The Full Text of this article is available as a PDF (408.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agranovsky A. A., Koonin E. V., Boyko V. P., Maiss E., Frötschl R., Lunina N. A., Atabekov J. G. Beet yellows closterovirus: complete genome structure and identification of a leader papain-like thiol protease. Virology. 1994 Jan;198(1):311–324. doi: 10.1006/viro.1994.1034. [DOI] [PubMed] [Google Scholar]
  2. Baker S. C., Yokomori K., Dong S., Carlisle R., Gorbalenya A. E., Koonin E. V., Lai M. M. Identification of the catalytic sites of a papain-like cysteine proteinase of murine coronavirus. J Virol. 1993 Oct;67(10):6056–6063. doi: 10.1128/jvi.67.10.6056-6063.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chen Z., Kuo L., Rowland R. R., Even C., Faaberg K. S., Plagemann P. G. Sequences of 3' end of genome and of 5' end of open reading frame 1a of lactate dehydrogenase-elevating virus and common junction motifs between 5' leader and bodies of seven subgenomic mRNAs. J Gen Virol. 1993 Apr;74(Pt 4):643–659. doi: 10.1099/0022-1317-74-4-643. [DOI] [PubMed] [Google Scholar]
  4. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dougherty W. G., Semler B. L. Expression of virus-encoded proteinases: functional and structural similarities with cellular enzymes. Microbiol Rev. 1993 Dec;57(4):781–822. doi: 10.1128/mr.57.4.781-822.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Godeny E. K., Chen L., Kumar S. N., Methven S. L., Koonin E. V., Brinton M. A. Complete genomic sequence and phylogenetic analysis of the lactate dehydrogenase-elevating virus (LDV). Virology. 1993 Jun;194(2):585–596. doi: 10.1006/viro.1993.1298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gorbalenya A. E., Blinov V. M., Donchenko A. P., Koonin E. V. An NTP-binding motif is the most conserved sequence in a highly diverged monophyletic group of proteins involved in positive strand RNA viral replication. J Mol Evol. 1989 Mar;28(3):256–268. doi: 10.1007/BF02102483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gorbalenya A. E., Koonin E. V., Donchenko A. P., Blinov V. M. Coronavirus genome: prediction of putative functional domains in the non-structural polyprotein by comparative amino acid sequence analysis. Nucleic Acids Res. 1989 Jun 26;17(12):4847–4861. doi: 10.1093/nar/17.12.4847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gorbalenya A. E., Koonin E. V., Lai M. M. Putative papain-related thiol proteases of positive-strand RNA viruses. Identification of rubi- and aphthovirus proteases and delineation of a novel conserved domain associated with proteases of rubi-, alpha- and coronaviruses. FEBS Lett. 1991 Aug 19;288(1-2):201–205. doi: 10.1016/0014-5793(91)81034-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Henikoff S., Henikoff J. G. Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10915–10919. doi: 10.1073/pnas.89.22.10915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Herold J., Raabe T., Schelle-Prinz B., Siddell S. G. Nucleotide sequence of the human coronavirus 229E RNA polymerase locus. Virology. 1993 Aug;195(2):680–691. doi: 10.1006/viro.1993.1419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Higgins D. G., Bleasby A. J., Fuchs R. CLUSTAL V: improved software for multiple sequence alignment. Comput Appl Biosci. 1992 Apr;8(2):189–191. doi: 10.1093/bioinformatics/8.2.189. [DOI] [PubMed] [Google Scholar]
  13. Jang S. K., Kräusslich H. G., Nicklin M. J., Duke G. M., Palmenberg A. C., Wimmer E. A segment of the 5' nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J Virol. 1988 Aug;62(8):2636–2643. doi: 10.1128/jvi.62.8.2636-2643.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kleina L. G., Grubman M. J. Antiviral effects of a thiol protease inhibitor on foot-and-mouth disease virus. J Virol. 1992 Dec;66(12):7168–7175. doi: 10.1128/jvi.66.12.7168-7175.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
  16. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  17. Lee H. J., Shieh C. K., Gorbalenya A. E., Koonin E. V., La Monica N., Tuler J., Bagdzhadzhyan A., Lai M. M. The complete sequence (22 kilobases) of murine coronavirus gene 1 encoding the putative proteases and RNA polymerase. Virology. 1991 Feb;180(2):567–582. doi: 10.1016/0042-6822(91)90071-I. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Leontovich A. M., Brodsky L. I., Gorbalenya A. E. Construction of the full local similarity map for two biopolymers. Biosystems. 1993;30(1-3):57–63. doi: 10.1016/0303-2647(93)90062-h. [DOI] [PubMed] [Google Scholar]
  19. Meulenberg J. J., Hulst M. M., de Meijer E. J., Moonen P. L., den Besten A., de Kluyver E. P., Wensvoort G., Moormann R. J. Lelystad virus, the causative agent of porcine epidemic abortion and respiratory syndrome (PEARS), is related to LDV and EAV. Virology. 1993 Jan;192(1):62–72. doi: 10.1006/viro.1993.1008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Oh C. S., Carrington J. C. Identification of essential residues in potyvirus proteinase HC-Pro by site-directed mutagenesis. Virology. 1989 Dec;173(2):692–699. doi: 10.1016/0042-6822(89)90582-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Plagemann P. G., Moennig V. Lactate dehydrogenase-elevating virus, equine arteritis virus, and simian hemorrhagic fever virus: a new group of positive-strand RNA viruses. Adv Virus Res. 1992;41:99–192. doi: 10.1016/S0065-3527(08)60036-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Polgár L., Halász P. Current problems in mechanistic studies of serine and cysteine proteinases. Biochem J. 1982 Oct 1;207(1):1–10. doi: 10.1042/bj2070001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Snijder E. J., Horzinek M. C. Toroviruses: replication, evolution and comparison with other members of the coronavirus-like superfamily. J Gen Virol. 1993 Nov;74(Pt 11):2305–2316. doi: 10.1099/0022-1317-74-11-2305. [DOI] [PubMed] [Google Scholar]
  24. Snijder E. J., Wassenaar A. L., Spaan W. J. Proteolytic processing of the replicase ORF1a protein of equine arteritis virus. J Virol. 1994 Sep;68(9):5755–5764. doi: 10.1128/jvi.68.9.5755-5764.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Snijder E. J., Wassenaar A. L., Spaan W. J. The 5' end of the equine arteritis virus replicase gene encodes a papainlike cysteine protease. J Virol. 1992 Dec;66(12):7040–7048. doi: 10.1128/jvi.66.12.7040-7048.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. den Boon J. A., Snijder E. J., Chirnside E. D., de Vries A. A., Horzinek M. C., Spaan W. J. Equine arteritis virus is not a togavirus but belongs to the coronaviruslike superfamily. J Virol. 1991 Jun;65(6):2910–2920. doi: 10.1128/jvi.65.6.2910-2920.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES