Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1995 Jul;69(7):4587–4592. doi: 10.1128/jvi.69.7.4587-4592.1995

Use of a novel human immunodeficiency virus type 1 reporter virus expressing human placental alkaline phosphatase to detect an alternative viral receptor.

J He 1, N R Landau 1
PMCID: PMC189211  PMID: 7769729

Abstract

We report here on the construction and use of a novel human immunodeficiency virus (HIV) type 1 reporter vector, HIV-AP, that encodes human placental alkaline phosphatase. Upon staining with chromogenic alkaline phosphatase substrates 24 to 36 h postinfection, cells infected with HIV-AP develop an intense purple color and can then be counted under a dissecting microscope. Alternatively, HIV-AP infectivity can be quantitated and infected cells can be sorted by a fluorescence-activated cell sorter after staining with a fluorescent alkaline phosphatase substrate. The assay is rapid and accurate, has very low background in a variety of cell lines and primary cells, and is not restricted to use in human cells. Infectious HIV-AP can be pseudotyped by various HIV or murine leukemia virus envelope glycoproteins. Using this virus, we have addressed the long-standing question of CD4-independent infection of cells by HIV. Our results confirm the presence on a human osteosarcoma cell line of an alternative receptor for HIV infection that functions with an efficiency approximately 1/20 that of CD4.

Full Text

The Full Text of this article is available as a PDF (776.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chehimi J., Prakash K., Shanmugam V., Collman R., Jackson S. J., Bandyopadhyay S., Starr S. E. CD4-independent infection of human peripheral blood dendritic cells with isolates of human immunodeficiency virus type 1. J Gen Virol. 1993 Jul;74(Pt 7):1277–1285. doi: 10.1099/0022-1317-74-7-1277. [DOI] [PubMed] [Google Scholar]
  2. Chen B. K., Saksela K., Andino R., Baltimore D. Distinct modes of human immunodeficiency virus type 1 proviral latency revealed by superinfection of nonproductively infected cell lines with recombinant luciferase-encoding viruses. J Virol. 1994 Feb;68(2):654–660. doi: 10.1128/jvi.68.2.654-660.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Connor R. I., Chen B. K., Choe S., Landau N. R. Vpr is required for efficient replication of human immunodeficiency virus type-1 in mononuclear phagocytes. Virology. 1995 Feb 1;206(2):935–944. doi: 10.1006/viro.1995.1016. [DOI] [PubMed] [Google Scholar]
  4. Delwart E. L., Buchschacher G. L., Jr, Freed E. O., Panganiban A. T. Analysis of HIV-1 envelope mutants and pseudotyping of replication-defective HIV-1 vectors by genetic complementation. AIDS Res Hum Retroviruses. 1992 Sep;8(9):1669–1677. doi: 10.1089/aid.1992.8.1669. [DOI] [PubMed] [Google Scholar]
  5. Fantini J., Cook D. G., Nathanson N., Spitalnik S. L., Gonzalez-Scarano F. Infection of colonic epithelial cell lines by type 1 human immunodeficiency virus is associated with cell surface expression of galactosylceramide, a potential alternative gp120 receptor. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):2700–2704. doi: 10.1073/pnas.90.7.2700. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fields-Berry S. C., Halliday A. L., Cepko C. L. A recombinant retrovirus encoding alkaline phosphatase confirms clonal boundary assignment in lineage analysis of murine retina. Proc Natl Acad Sci U S A. 1992 Jan 15;89(2):693–697. doi: 10.1073/pnas.89.2.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gabuzda D. H., Lawrence K., Langhoff E., Terwilliger E., Dorfman T., Haseltine W. A., Sodroski J. Role of vif in replication of human immunodeficiency virus type 1 in CD4+ T lymphocytes. J Virol. 1992 Nov;66(11):6489–6495. doi: 10.1128/jvi.66.11.6489-6495.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Harouse J. M., Kunsch C., Hartle H. T., Laughlin M. A., Hoxie J. A., Wigdahl B., Gonzalez-Scarano F. CD4-independent infection of human neural cells by human immunodeficiency virus type 1. J Virol. 1989 Jun;63(6):2527–2533. doi: 10.1128/jvi.63.6.2527-2533.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kim S. Y., Byrn R., Groopman J., Baltimore D. Temporal aspects of DNA and RNA synthesis during human immunodeficiency virus infection: evidence for differential gene expression. J Virol. 1989 Sep;63(9):3708–3713. doi: 10.1128/jvi.63.9.3708-3713.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kimpton J., Emerman M. Detection of replication-competent and pseudotyped human immunodeficiency virus with a sensitive cell line on the basis of activation of an integrated beta-galactosidase gene. J Virol. 1992 Apr;66(4):2232–2239. doi: 10.1128/jvi.66.4.2232-2239.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Landau N. R., Page K. A., Littman D. R. Pseudotyping with human T-cell leukemia virus type I broadens the human immunodeficiency virus host range. J Virol. 1991 Jan;65(1):162–169. doi: 10.1128/jvi.65.1.162-169.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mori K., Ringler D. J., Desrosiers R. C. Restricted replication of simian immunodeficiency virus strain 239 in macrophages is determined by env but is not due to restricted entry. J Virol. 1993 May;67(5):2807–2814. doi: 10.1128/jvi.67.5.2807-2814.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Moses A. V., Bloom F. E., Pauza C. D., Nelson J. A. Human immunodeficiency virus infection of human brain capillary endothelial cells occurs via a CD4/galactosylceramide-independent mechanism. Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10474–10478. doi: 10.1073/pnas.90.22.10474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Nagy K., Young M., Baboonian C., Merson J., Whittle P., Oroszlan S. Antiviral activity of human immunodeficiency virus type 1 protease inhibitors in a single cycle of infection: evidence for a role of protease in the early phase. J Virol. 1994 Feb;68(2):757–765. doi: 10.1128/jvi.68.2.757-765.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Page K. A., Landau N. R., Littman D. R. Construction and use of a human immunodeficiency virus vector for analysis of virus infectivity. J Virol. 1990 Nov;64(11):5270–5276. doi: 10.1128/jvi.64.11.5270-5276.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Page K. A., Stearns S. M., Littman D. R. Analysis of mutations in the V3 domain of gp160 that affect fusion and infectivity. J Virol. 1992 Jan;66(1):524–533. doi: 10.1128/jvi.66.1.524-533.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sattentau Q. J., Dalgleish A. G., Weiss R. A., Beverley P. C. Epitopes of the CD4 antigen and HIV infection. Science. 1986 Nov 28;234(4780):1120–1123. doi: 10.1126/science.2430333. [DOI] [PubMed] [Google Scholar]
  18. Stamatatos L., Werner A., Cheng-Mayer C. Differential regulation of cellular tropism and sensitivity to soluble CD4 neutralization by the envelope gp120 of human immunodeficiency virus type 1. J Virol. 1994 Aug;68(8):4973–4979. doi: 10.1128/jvi.68.8.4973-4979.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Tateno M., Gonzalez-Scarano F., Levy J. A. Human immunodeficiency virus can infect CD4-negative human fibroblastoid cells. Proc Natl Acad Sci U S A. 1989 Jun;86(11):4287–4290. doi: 10.1073/pnas.86.11.4287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wang C. T., Barklis E. Assembly, processing, and infectivity of human immunodeficiency virus type 1 gag mutants. J Virol. 1993 Jul;67(7):4264–4273. doi: 10.1128/jvi.67.7.4264-4273.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES