Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1995 Aug;69(8):4628–4632. doi: 10.1128/jvi.69.8.4628-4632.1995

Antibody to adhesion molecule LFA-1 enhances plasma neutralization of human immunodeficiency virus type 1.

M B Gomez 1, J E Hildreth 1
PMCID: PMC189262  PMID: 7541842

Abstract

We have shown that a monoclonal antibody to the cell surface adhesion molecule LFA-1 (CD18/CD11a) enhances plasma neutralization of a laboratory isolate (HIVMN) and a primary isolate (HIV28R) of human immunodeficiency virus type 1. Human phytohemagglutinin blasts were infected with HIVMN or HIV28R in the presence of plasma pooled from HIV-positive individuals (AIDS plasma) or immunoglobulin G from AIDS plasma alone or combined with a monoclonal antibody (MAb) to LFA-1. While AIDS plasma alone at a dilution of 1:1,250 neutralized HIVMN and HIV28R infection by 15 and 0%, respectively, in the presence of a saturating concentration of the MAb to LFA-1 the plasma neutralized both viruses by more than 80% at this dilution. Immunoglobulin G purified from AIDS plasma, when used in combination with the MAb to LFA-1, showed the same synergistic effect in HIV neutralization as seen with the AIDS plasma and anti-LFA-1. The MAb against LFA-1 partially neutralized both viral isolates (45 to 55%) on its own. These results demonstrate significant synergy between the plasma and antibody against LFA-1 in the neutralization of HIV. The observations therefore suggest an important role for adhesion molecules in HIV infectivity and transmission. The results have implications for the recently observed host effect on HIV susceptibility to antibody neutralization.

Full Text

The Full Text of this article is available as a PDF (241.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arthur L. O., Bess J. W., Jr, Sowder R. C., 2nd, Benveniste R. E., Mann D. L., Chermann J. C., Henderson L. E. Cellular proteins bound to immunodeficiency viruses: implications for pathogenesis and vaccines. Science. 1992 Dec 18;258(5090):1935–1938. doi: 10.1126/science.1470916. [DOI] [PubMed] [Google Scholar]
  2. Berman P. W., Nakamura G. R. Adhesion mediated by intercellular adhesion molecule 1 attenuates the potency of antibodies that block HIV-1 gp160-dependent syncytium formation. AIDS Res Hum Retroviruses. 1994 May;10(5):585–593. doi: 10.1089/aid.1994.10.585. [DOI] [PubMed] [Google Scholar]
  3. Busso M., Thornthwaite J., Resnick L. HIV-induced syncytium formation requires the formation of conjugates between virus-infected and uninfected T-cells in vitro. AIDS. 1991 Dec;5(12):1425–1432. doi: 10.1097/00002030-199112000-00003. [DOI] [PubMed] [Google Scholar]
  4. Daar E. S., Li X. L., Moudgil T., Ho D. D. High concentrations of recombinant soluble CD4 are required to neutralize primary human immunodeficiency virus type 1 isolates. Proc Natl Acad Sci U S A. 1990 Sep;87(17):6574–6578. doi: 10.1073/pnas.87.17.6574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dalgleish A. G., Beverley P. C., Clapham P. R., Crawford D. H., Greaves M. F., Weiss R. A. The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature. 1984 Dec 20;312(5996):763–767. doi: 10.1038/312763a0. [DOI] [PubMed] [Google Scholar]
  6. Doyle C., Strominger J. L. Interaction between CD4 and class II MHC molecules mediates cell adhesion. Nature. 1987 Nov 19;330(6145):256–259. doi: 10.1038/330256a0. [DOI] [PubMed] [Google Scholar]
  7. Fauci A. S. The human immunodeficiency virus: infectivity and mechanisms of pathogenesis. Science. 1988 Feb 5;239(4840):617–622. doi: 10.1126/science.3277274. [DOI] [PubMed] [Google Scholar]
  8. Gay D., Maddon P., Sekaly R., Talle M. A., Godfrey M., Long E., Goldstein G., Chess L., Axel R., Kappler J. Functional interaction between human T-cell protein CD4 and the major histocompatibility complex HLA-DR antigen. Nature. 1987 Aug 13;328(6131):626–629. doi: 10.1038/328626a0. [DOI] [PubMed] [Google Scholar]
  9. Gelderblom H. R. Assembly and morphology of HIV: potential effect of structure on viral function. AIDS. 1991 Jun;5(6):617–637. [PubMed] [Google Scholar]
  10. Gomatos P. J., Stamatos N. M., Gendelman H. E., Fowler A., Hoover D. L., Kalter D. C., Burke D. S., Tramont E. C., Meltzer M. S. Relative inefficiency of soluble recombinant CD4 for inhibition of infection by monocyte-tropic HIV in monocytes and T cells. J Immunol. 1990 Jun 1;144(11):4183–4188. [PubMed] [Google Scholar]
  11. Goudsmit J., Smit L. CD11a/CD18 (LFA-1) epitopes involved in syncytium formation among CD4+ T-cells following cell free HIV-1 infection. Viral Immunol. 1990 Winter;3(4):289–293. doi: 10.1089/vim.1990.3.289. [DOI] [PubMed] [Google Scholar]
  12. Guo M. M., Hildreth J. E. HIV-induced loss of CD44 expression in monocytic cell lines. J Immunol. 1993 Aug 15;151(4):2225–2236. [PubMed] [Google Scholar]
  13. Hansen J. E., Nielsen C., Mathiesen L. R., Nielsen J. O. Involvement of lymphocyte function-associated antigen-1 (LFA-1) in HIV infection: inhibition by monoclonal antibody. Scand J Infect Dis. 1991;23(1):31–36. doi: 10.3109/00365549109023371. [DOI] [PubMed] [Google Scholar]
  14. Hildreth J. E., August J. T. The human lymphocyte function-associated (HLFA) antigen and a related macrophage differentiation antigen (HMac-1): functional effects of subunit-specific monoclonal antibodies. J Immunol. 1985 May;134(5):3272–3280. [PubMed] [Google Scholar]
  15. Hildreth J. E., Holt V., August J. T., Pescovitz M. D. Monoclonal antibodies against porcine LFA-1: species cross-reactivity and functional effects of beta-subunit-specific antibodies. Mol Immunol. 1989 Sep;26(9):883–895. doi: 10.1016/0161-5890(89)90145-4. [DOI] [PubMed] [Google Scholar]
  16. Hildreth J. E., Orentas R. J. Involvement of a leukocyte adhesion receptor (LFA-1) in HIV-induced syncytium formation. Science. 1989 Jun 2;244(4908):1075–1078. doi: 10.1126/science.2543075. [DOI] [PubMed] [Google Scholar]
  17. Hoxie J. A., Fitzharris T. P., Youngbar P. R., Matthews D. M., Rackowski J. L., Radka S. F. Nonrandom association of cellular antigens with HTLV-III virions. Hum Immunol. 1987 Jan;18(1):39–52. doi: 10.1016/0198-8859(87)90111-x. [DOI] [PubMed] [Google Scholar]
  18. Lando Z., Sarin P., Megson M., Greene W. C., Waldman T. A., Gallo R. C., Broder S. Association of human T-cell leukaemia/lymphoma virus with the Tac antigen marker for the human T-cell growth factor receptor. Nature. 1983 Oct 20;305(5936):733–736. doi: 10.1038/305733a0. [DOI] [PubMed] [Google Scholar]
  19. Lane H. C., Fauci A. S. Immunologic abnormalities in the acquired immunodeficiency syndrome. Annu Rev Immunol. 1985;3:477–500. doi: 10.1146/annurev.iy.03.040185.002401. [DOI] [PubMed] [Google Scholar]
  20. Lifson J. D., Feinberg M. B., Reyes G. R., Rabin L., Banapour B., Chakrabarti S., Moss B., Wong-Staal F., Steimer K. S., Engleman E. G. Induction of CD4-dependent cell fusion by the HTLV-III/LAV envelope glycoprotein. Nature. 1986 Oct 23;323(6090):725–728. doi: 10.1038/323725a0. [DOI] [PubMed] [Google Scholar]
  21. Lifson J. D., Reyes G. R., McGrath M. S., Stein B. S., Engleman E. G. AIDS retrovirus induced cytopathology: giant cell formation and involvement of CD4 antigen. Science. 1986 May 30;232(4754):1123–1127. doi: 10.1126/science.3010463. [DOI] [PubMed] [Google Scholar]
  22. Mascola J. R., Louwagie J., McCutchan F. E., Fischer C. L., Hegerich P. A., Wagner K. F., Fowler A. K., McNeil J. G., Burke D. S. Two antigenically distinct subtypes of human immunodeficiency virus type 1: viral genotype predicts neutralization serotype. J Infect Dis. 1994 Jan;169(1):48–54. doi: 10.1093/infdis/169.1.48. [DOI] [PubMed] [Google Scholar]
  23. Moore J. P., Klasse P. J. Thermodynamic and kinetic analysis of sCD4 binding to HIV-1 virions and of gp120 dissociation. AIDS Res Hum Retroviruses. 1992 Apr;8(4):443–450. doi: 10.1089/aid.1992.8.443. [DOI] [PubMed] [Google Scholar]
  24. Moore J. P., McKeating J. A., Weiss R. A., Sattentau Q. J. Dissociation of gp120 from HIV-1 virions induced by soluble CD4. Science. 1990 Nov 23;250(4984):1139–1142. doi: 10.1126/science.2251501. [DOI] [PubMed] [Google Scholar]
  25. Orentas R. J., Hildreth J. E. Association of host cell surface adhesion receptors and other membrane proteins with HIV and SIV. AIDS Res Hum Retroviruses. 1993 Nov;9(11):1157–1165. doi: 10.1089/aid.1993.9.1157. [DOI] [PubMed] [Google Scholar]
  26. Pantaleo G., Butini L., Graziosi C., Poli G., Schnittman S. M., Greenhouse J. J., Gallin J. I., Fauci A. S. Human immunodeficiency virus (HIV) infection in CD4+ T lymphocytes genetically deficient in LFA-1: LFA-1 is required for HIV-mediated cell fusion but not for viral transmission. J Exp Med. 1991 Feb 1;173(2):511–514. doi: 10.1084/jem.173.2.511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pantaleo G., Poli G., Butini L., Fox C., Dayton A. I., Fauci A. S. Dissociation between syncytia formation and HIV spreading. Suppression of syncytia formation does not necessarily reflect inhibition of HIV infection. Eur J Immunol. 1991 Jul;21(7):1771–1774. doi: 10.1002/eji.1830210730. [DOI] [PubMed] [Google Scholar]
  28. Saifuddin M., Ghassemi M., Patki C., Parker C. J., Spear G. T. Host cell components affect the sensitivity of HIV type 1 to complement-mediated virolysis. AIDS Res Hum Retroviruses. 1994 Jul;10(7):829–837. doi: 10.1089/aid.1994.10.829. [DOI] [PubMed] [Google Scholar]
  29. Sawyer L. S., Wrin M. T., Crawford-Miksza L., Potts B., Wu Y., Weber P. A., Alfonso R. D., Hanson C. V. Neutralization sensitivity of human immunodeficiency virus type 1 is determined in part by the cell in which the virus is propagated. J Virol. 1994 Mar;68(3):1342–1349. doi: 10.1128/jvi.68.3.1342-1349.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Schnittman S. M., Lane H. C., Greenhouse J., Justement J. S., Baseler M., Fauci A. S. Preferential infection of CD4+ memory T cells by human immunodeficiency virus type 1: evidence for a role in the selective T-cell functional defects observed in infected individuals. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6058–6062. doi: 10.1073/pnas.87.16.6058. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Springer T. A. Adhesion receptors of the immune system. Nature. 1990 Aug 2;346(6283):425–434. doi: 10.1038/346425a0. [DOI] [PubMed] [Google Scholar]
  32. Springer T. A., Dustin M. L., Kishimoto T. K., Marlin S. D. The lymphocyte function-associated LFA-1, CD2, and LFA-3 molecules: cell adhesion receptors of the immune system. Annu Rev Immunol. 1987;5:223–252. doi: 10.1146/annurev.iy.05.040187.001255. [DOI] [PubMed] [Google Scholar]
  33. Stein B. S., Gowda S. D., Lifson J. D., Penhallow R. C., Bensch K. G., Engleman E. G. pH-independent HIV entry into CD4-positive T cells via virus envelope fusion to the plasma membrane. Cell. 1987 Jun 5;49(5):659–668. doi: 10.1016/0092-8674(87)90542-3. [DOI] [PubMed] [Google Scholar]
  34. Valentin A., Lundin K., Patarroyo M., Asjö B. The leukocyte adhesion glycoprotein CD18 participates in HIV-1-induced syncytia formation in monocytoid and T cells. J Immunol. 1990 Feb 1;144(3):934–937. [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES