Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Journal of Virology logoLink to Journal of Virology
. 1995 Aug;69(8):4711–4716. doi: 10.1128/jvi.69.8.4711-4716.1995

Vaccination with recombinant vaccinia viruses expressing ICP27 induces protective immunity against herpes simplex virus through CD4+ Th1+ T cells.

E Manickan 1, M Francotte 1, N Kuklin 1, M Dewerchin 1, C Molitor 1, D Gheysen 1, M Slaoui 1, B T Rouse 1
PMCID: PMC189277  PMID: 7609036

Abstract

This study was designed to evaluate the efficacy and mechanisms of protection mediated by recombinant vaccinia viruses encoding immediate-early (IE) proteins of herpes simplex virus type 2 (HSV-2). Three mouse strains were immunized against the IE proteins ICP27, ICP0, and ICP4, and mice were challenged intracutaneously in the zosteriform model with HSV-2 strain MS. Protection was observed only following immunization with the ICP27 construct and then only in the BALB/c mouse strain. Protection in BALB/c mice was ablated by CD4+ T-cell suppression but remained intact in animals depleted of CD8+ T cells. Moreover, protection could be afforded to SCID nude recipients with CD4+ but not CD8+ T cells from ICP27-immunized mice. Only BALB/c mice developed a delayed-type hypersensitivity reaction to HSV-2, and in vitro measurements of humoral and cell-mediated immunity revealed response patterns to ICP27 and HSV that differed between protected BALB/c and unprotected mouse strains. Accordingly, BALB/c responses showed antigen-induced cytokine profiles dominated by type 1 cytokines, whereas C57BL/6 and C3H/HeN mice generated cytokine responses mainly of the type 2 variety. Our results may indicate that protection against zosterification is mainly mediated by CD4+ T cells that express a type 1 cytokine profile and that protective vaccines against HSV which effectively induce such T-cell responses should be chosen.

Full Text

The Full Text of this article is available as a PDF (294.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Banks T. A., Allen E. M., Dasgupta S., Sandri-Goldin R., Rouse B. T. Herpes simplex virus type 1-specific cytotoxic T lymphocytes recognize immediate-early protein ICP27. J Virol. 1991 Jun;65(6):3185–3191. doi: 10.1128/jvi.65.6.3185-3191.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Banks T. A., Jenkins F. J., Kanangat S., Nair S., Dasgupta S., Foster C. M., Rouse B. T. Vaccination with the immediate-early protein ICP47 of herpes simplex virus-type 1 (HSV-1) induces virus-specific lymphoproliferation, but fails to protect against lethal challenge. Virology. 1994 Apr;200(1):236–245. doi: 10.1006/viro.1994.1181. [DOI] [PubMed] [Google Scholar]
  3. Banks T. A., Nair S., Rouse B. T. Recognition by and in vitro induction of cytotoxic T lymphocytes against predicted epitopes of the immediate-early protein ICP27 of herpes simplex virus. J Virol. 1993 Jan;67(1):613–616. doi: 10.1128/jvi.67.1.613-616.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cher D. J., Mosmann T. R. Two types of murine helper T cell clone. II. Delayed-type hypersensitivity is mediated by TH1 clones. J Immunol. 1987 Jun 1;138(11):3688–3694. [PubMed] [Google Scholar]
  5. Coutelier J. P., van der Logt J. T., Heessen F. W., Warnier G., Van Snick J. IgG2a restriction of murine antibodies elicited by viral infections. J Exp Med. 1987 Jan 1;165(1):64–69. doi: 10.1084/jem.165.1.64. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dalessio J., Ashley R. Highly sensitive enhanced chemiluminescence immunodetection method for herpes simplex virus type 2 Western immunoblot. J Clin Microbiol. 1992 Apr;30(4):1005–1007. doi: 10.1128/jcm.30.4.1005-1007.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Finkelman F. D., Holmes J., Katona I. M., Urban J. F., Jr, Beckmann M. P., Park L. S., Schooley K. A., Coffman R. L., Mosmann T. R., Paul W. E. Lymphokine control of in vivo immunoglobulin isotype selection. Annu Rev Immunol. 1990;8:303–333. doi: 10.1146/annurev.iy.08.040190.001511. [DOI] [PubMed] [Google Scholar]
  8. Hendricks R. L., Tumpey T. M., Finnegan A. IFN-gamma and IL-2 are protective in the skin but pathologic in the corneas of HSV-1-infected mice. J Immunol. 1992 Nov 1;149(9):3023–3028. [PubMed] [Google Scholar]
  9. Kapoor A. K., Nash A. A., Wildy P., Phelan J., McLean C. S., Field H. J. Pathogenesis of herpes simplex virus in congenitally athymic mice: the relative roles of cell-mediated and humoral immunity. J Gen Virol. 1982 Jun;60(Pt 2):225–233. doi: 10.1099/0022-1317-60-2-225. [DOI] [PubMed] [Google Scholar]
  10. Martin S., Courtney R. J., Fowler G., Rouse B. T. Herpes simplex virus type 1-specific cytotoxic T lymphocytes recognize virus nonstructural proteins. J Virol. 1988 Jul;62(7):2265–2273. doi: 10.1128/jvi.62.7.2265-2273.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Mosmann T. R., Cherwinski H., Bond M. W., Giedlin M. A., Coffman R. L. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol. 1986 Apr 1;136(7):2348–2357. [PubMed] [Google Scholar]
  12. Nash A. A., Jayasuriya A., Phelan J., Cobbold S. P., Waldmann H., Prospero T. Different roles for L3T4+ and Lyt 2+ T cell subsets in the control of an acute herpes simplex virus infection of the skin and nervous system. J Gen Virol. 1987 Mar;68(Pt 3):825–833. doi: 10.1099/0022-1317-68-3-825. [DOI] [PubMed] [Google Scholar]
  13. Nguyen L., Knipe D. M., Finberg R. W. Mechanism of virus-induced Ig subclass shifts. J Immunol. 1994 Jan 15;152(2):478–484. [PubMed] [Google Scholar]
  14. Schmid D. S., Rouse B. T. The role of T cell immunity in control of herpes simplex virus. Curr Top Microbiol Immunol. 1992;179:57–74. doi: 10.1007/978-3-642-77247-4_4. [DOI] [PubMed] [Google Scholar]
  15. Simmons A., Nash A. A. Zosteriform spread of herpes simplex virus as a model of recrudescence and its use to investigate the role of immune cells in prevention of recurrent disease. J Virol. 1984 Dec;52(3):816–821. doi: 10.1128/jvi.52.3.816-821.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Simmons A., Tscharke D. C. Anti-CD8 impairs clearance of herpes simplex virus from the nervous system: implications for the fate of virally infected neurons. J Exp Med. 1992 May 1;175(5):1337–1344. doi: 10.1084/jem.175.5.1337. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES