Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1995 Aug;69(8):4898–4905. doi: 10.1128/jvi.69.8.4898-4905.1995

Gamma interferon expression during acute and latent nervous system infection by herpes simplex virus type 1.

E M Cantin 1, D R Hinton 1, J Chen 1, H Openshaw 1
PMCID: PMC189304  PMID: 7609058

Abstract

This study was initiated to evaluate a role for gamma interferon (IFN-gamma) in herpes simplex virus type 1 (HSV-1) infection. At the acute stage of infection in mice, HSV-1 replication in trigeminal ganglia and brain stem tissue was modestly but consistently enhanced in mice from which IFN-gamma was by ablated monoclonal antibody treatment and in mice genetically lacking the IFN-gamma receptor (Rgko mice). As determined by reverse transcriptase PCR, IFN-gamma and tumor necrosis factor alpha transcripts were present in trigeminal ganglia during both acute and latent HSV-1 infection. CD4+ and CD8+ T cells were detected initially in trigeminal ganglia at day 5 after HSV-1 inoculation, and these cells persisted for 6 months into latency. The T cells were focused around morphologically normal neurons that showed no signs of active infection, but many of which expressed HSV-1 latency-associated transcripts. Secreted IFN-gamma was present up to 6 months into latency in areas of the T-cell infiltration. By 9 months into latency, both the T-cell infiltrate and IFN-gamma expression had cleared, although there remained a slight increase in macrophage levels in trigeminal ganglia. In HSV-1-infected brain stem tissue, T cells and IFN-gamma expression were present at 1 month but were gone by 6 months after infection. Our hypothesis is that the persistence of T cells and the sustained IFN-gamma expression occur in response to an HSV-1 antigen(s) in the nervous system. This hypothesis is consistent with a new model of HSV-1 latency which suggests that limited HSV-1 antigen expression occurs during latency (M. Kosz-Vnenchak, J. Jacobson, D.M. Coen, and D.M. Knipe, J. Virol. 67:5383-5393, 1993). We speculate that prolonged secretion of IFN-gamma during latency may modulate a reactivated HSV-1 infection.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aurelius E., Andersson B., Forsgren M., Sköldenberg B., Strannegård O. Cytokines and other markers of intrathecal immune response in patients with herpes simplex encephalitis. J Infect Dis. 1994 Sep;170(3):678–681. doi: 10.1093/infdis/170.3.678. [DOI] [PubMed] [Google Scholar]
  2. Cantin E. M., Lange W., Openshaw H. Application of polymerase chain reaction assays to studies of herpes simplex virus latency. Intervirology. 1991;32(2):93–100. doi: 10.1159/000150189. [DOI] [PubMed] [Google Scholar]
  3. Cherwinski H. M., Schumacher J. H., Brown K. D., Mosmann T. R. Two types of mouse helper T cell clone. III. Further differences in lymphokine synthesis between Th1 and Th2 clones revealed by RNA hybridization, functionally monospecific bioassays, and monoclonal antibodies. J Exp Med. 1987 Nov 1;166(5):1229–1244. doi: 10.1084/jem.166.5.1229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cunningham A. L., Merigan T. C. gamma Interferon production appears to predict time of recurrence of herpes labialis. J Immunol. 1983 May;130(5):2397–2400. [PubMed] [Google Scholar]
  5. De Stasio P. R., Taylor M. W. Specific effect of interferon on the herpes simplex virus type 1 transactivation event. J Virol. 1990 Jun;64(6):2588–2593. doi: 10.1128/jvi.64.6.2588-2593.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Deatly A. M., Spivack J. G., Lavi E., O'Boyle D. R., 2nd, Fraser N. W. Latent herpes simplex virus type 1 transcripts in peripheral and central nervous system tissues of mice map to similar regions of the viral genome. J Virol. 1988 Mar;62(3):749–756. doi: 10.1128/jvi.62.3.749-756.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Doherty P. C. Cell-mediated cytotoxicity. Cell. 1993 Nov 19;75(4):607–612. doi: 10.1016/0092-8674(93)90480-e. [DOI] [PubMed] [Google Scholar]
  8. Farrar M. A., Schreiber R. D. The molecular cell biology of interferon-gamma and its receptor. Annu Rev Immunol. 1993;11:571–611. doi: 10.1146/annurev.iy.11.040193.003035. [DOI] [PubMed] [Google Scholar]
  9. Farrell M. J., Dobson A. T., Feldman L. T. Herpes simplex virus latency-associated transcript is a stable intron. Proc Natl Acad Sci U S A. 1991 Feb 1;88(3):790–794. doi: 10.1073/pnas.88.3.790. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Feduchi E., Alonso M. A., Carrasco L. Human gamma interferon and tumor necrosis factor exert a synergistic blockade on the replication of herpes simplex virus. J Virol. 1989 Mar;63(3):1354–1359. doi: 10.1128/jvi.63.3.1354-1359.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fraser N. W., Block T. M., Spivack J. G. The latency-associated transcripts of herpes simplex virus: RNA in search of function. Virology. 1992 Nov;191(1):1–8. doi: 10.1016/0042-6822(92)90160-q. [DOI] [PubMed] [Google Scholar]
  12. Gebhardt B. M., Hill J. M. Cellular neuroimmunologic responses to ocular herpes simplex virus infection. J Neuroimmunol. 1990 Aug;28(3):227–236. doi: 10.1016/0165-5728(90)90016-g. [DOI] [PubMed] [Google Scholar]
  13. Gebhardt B. M., Hill J. M. T lymphocytes in the trigeminal ganglia of rabbits during corneal HSV infection. Invest Ophthalmol Vis Sci. 1988 Nov;29(11):1683–1691. [PubMed] [Google Scholar]
  14. Green M. T., Courtney R. J., Dunkel E. C. Detection of an immediate early herpes simplex virus type 1 polypeptide in trigeminal ganglia from latently infected animals. Infect Immun. 1981 Dec;34(3):987–992. doi: 10.1128/iai.34.3.987-992.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Guidotti L. G., Ando K., Hobbs M. V., Ishikawa T., Runkel L., Schreiber R. D., Chisari F. V. Cytotoxic T lymphocytes inhibit hepatitis B virus gene expression by a noncytolytic mechanism in transgenic mice. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3764–3768. doi: 10.1073/pnas.91.9.3764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hill J. M., Sedarati F., Javier R. T., Wagner E. K., Stevens J. G. Herpes simplex virus latent phase transcription facilitates in vivo reactivation. Virology. 1990 Jan;174(1):117–125. doi: 10.1016/0042-6822(90)90060-5. [DOI] [PubMed] [Google Scholar]
  17. Hill T. J., Field H. J., Blyth W. A. Acute and recurrent infection with herpes simplex virus in the mouse: a model for studying latency and recurrent disease. J Gen Virol. 1975 Sep;28(3):341–353. doi: 10.1099/0022-1317-28-3-341. [DOI] [PubMed] [Google Scholar]
  18. Huang S., Hendriks W., Althage A., Hemmi S., Bluethmann H., Kamijo R., Vilcek J., Zinkernagel R. M., Aguet M. Immune response in mice that lack the interferon-gamma receptor. Science. 1993 Mar 19;259(5102):1742–1745. doi: 10.1126/science.8456301. [DOI] [PubMed] [Google Scholar]
  19. Joly E., Mucke L., Oldstone M. B. Viral persistence in neurons explained by lack of major histocompatibility class I expression. Science. 1991 Sep 13;253(5025):1283–1285. doi: 10.1126/science.1891717. [DOI] [PubMed] [Google Scholar]
  20. Kanangat S., Solomon A., Rouse B. T. Use of quantitative polymerase chain reaction to quantitate cytokine messenger RNA molecules. Mol Immunol. 1992 Oct;29(10):1229–1236. doi: 10.1016/0161-5890(92)90059-7. [DOI] [PubMed] [Google Scholar]
  21. Karupiah G., Fredrickson T. N., Holmes K. L., Khairallah L. H., Buller R. M. Importance of interferons in recovery from mousepox. J Virol. 1993 Jul;67(7):4214–4226. doi: 10.1128/jvi.67.7.4214-4226.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kosz-Vnenchak M., Jacobson J., Coen D. M., Knipe D. M. Evidence for a novel regulatory pathway for herpes simplex virus gene expression in trigeminal ganglion neurons. J Virol. 1993 Sep;67(9):5383–5393. doi: 10.1128/jvi.67.9.5383-5393.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kramer M. F., Coen D. M. Quantification of transcripts from the ICP4 and thymidine kinase genes in mouse ganglia latently infected with herpes simplex virus. J Virol. 1995 Mar;69(3):1389–1399. doi: 10.1128/jvi.69.3.1389-1399.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Leist T. P., Eppler M., Zinkernagel R. M. Enhanced virus replication and inhibition of lymphocytic choriomeningitis virus disease in anti-gamma interferon-treated mice. J Virol. 1989 Jun;63(6):2813–2819. doi: 10.1128/jvi.63.6.2813-2819.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lucin P., Pavić I., Polić B., Jonjić S., Koszinowski U. H. Gamma interferon-dependent clearance of cytomegalovirus infection in salivary glands. J Virol. 1992 Apr;66(4):1977–1984. doi: 10.1128/jvi.66.4.1977-1984.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Martz E., Gamble S. R. How do CTL control virus infections? Evidence for prelytic halt of herpes simplex. Viral Immunol. 1992 Spring;5(1):81–91. doi: 10.1089/vim.1992.5.81. [DOI] [PubMed] [Google Scholar]
  27. Nash A. A., Jayasuriya A., Phelan J., Cobbold S. P., Waldmann H., Prospero T. Different roles for L3T4+ and Lyt 2+ T cell subsets in the control of an acute herpes simplex virus infection of the skin and nervous system. J Gen Virol. 1987 Mar;68(Pt 3):825–833. doi: 10.1099/0022-1317-68-3-825. [DOI] [PubMed] [Google Scholar]
  28. Nguyen L., Knipe D. M., Finberg R. W. Mechanism of virus-induced Ig subclass shifts. J Immunol. 1994 Jan 15;152(2):478–484. [PubMed] [Google Scholar]
  29. Pereira R. A., Tscharke D. C., Simmons A. Upregulation of class I major histocompatibility complex gene expression in primary sensory neurons, satellite cells, and Schwann cells of mice in response to acute but not latent herpes simplex virus infection in vivo. J Exp Med. 1994 Sep 1;180(3):841–850. doi: 10.1084/jem.180.3.841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Ramsay A. J., Ruby J., Ramshaw I. A. A case for cytokines as effector molecules in the resolution of virus infection. Immunol Today. 1993 Apr;14(4):155–157. doi: 10.1016/0167-5699(93)90277-R. [DOI] [PubMed] [Google Scholar]
  31. Ramshaw I., Ruby J., Ramsay A., Ada G., Karupiah G. Expression of cytokines by recombinant vaccinia viruses: a model for studying cytokines in virus infections in vivo. Immunol Rev. 1992 Jun;127:157–182. doi: 10.1111/j.1600-065x.1992.tb01413.x. [DOI] [PubMed] [Google Scholar]
  32. Roizman B., Sears A. E. An inquiry into the mechanisms of herpes simplex virus latency. Annu Rev Microbiol. 1987;41:543–571. doi: 10.1146/annurev.mi.41.100187.002551. [DOI] [PubMed] [Google Scholar]
  33. Rossol-Voth R., Rossol S., Schütt K. H., Corridori S., de Cian W., Falke D. In vivo protective effect of tumour necrosis factor alpha against experimental infection with herpes simplex virus type 1. J Gen Virol. 1991 Jan;72(Pt 1):143–147. doi: 10.1099/0022-1317-72-1-143. [DOI] [PubMed] [Google Scholar]
  34. Schmid D. S., Rouse B. T. The role of T cell immunity in control of herpes simplex virus. Curr Top Microbiol Immunol. 1992;179:57–74. doi: 10.1007/978-3-642-77247-4_4. [DOI] [PubMed] [Google Scholar]
  35. Schreiber R. D., Hicks L. J., Celada A., Buchmeier N. A., Gray P. W. Monoclonal antibodies to murine gamma-interferon which differentially modulate macrophage activation and antiviral activity. J Immunol. 1985 Mar;134(3):1609–1618. [PubMed] [Google Scholar]
  36. Siebert P. D., Chenchik A. Modified acid guanidinium thiocyanate-phenol-chloroform RNA extraction method which greatly reduces DNA contamination. Nucleic Acids Res. 1993 Apr 25;21(8):2019–2020. doi: 10.1093/nar/21.8.2019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Simmons A., Tscharke D. C. Anti-CD8 impairs clearance of herpes simplex virus from the nervous system: implications for the fate of virally infected neurons. J Exp Med. 1992 May 1;175(5):1337–1344. doi: 10.1084/jem.175.5.1337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Smith P. M., Wolcott R. M., Chervenak R., Jennings S. R. Control of acute cutaneous herpes simplex virus infection: T cell-mediated viral clearance is dependent upon interferon-gamma (IFN-gamma). Virology. 1994 Jul;202(1):76–88. doi: 10.1006/viro.1994.1324. [DOI] [PubMed] [Google Scholar]
  39. Spitalny G. L., Havell E. A. Monoclonal antibody to murine gamma interferon inhibits lymphokine-induced antiviral and macrophage tumoricidal activities. J Exp Med. 1984 May 1;159(5):1560–1565. doi: 10.1084/jem.159.5.1560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Stanton G. J., Jordan C., Hart A., Heard H., Langford M. P., Baron S. Nondetectable levels of interferon gamma is a critical host defense during the first day of herpes simplex virus infection. Microb Pathog. 1987 Sep;3(3):179–183. doi: 10.1016/0882-4010(87)90094-5. [DOI] [PubMed] [Google Scholar]
  41. Stevens J. G. Human herpesviruses: a consideration of the latent state. Microbiol Rev. 1989 Sep;53(3):318–332. doi: 10.1128/mr.53.3.318-332.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Stevens J. G., Wagner E. K., Devi-Rao G. B., Cook M. L., Feldman L. T. RNA complementary to a herpesvirus alpha gene mRNA is prominent in latently infected neurons. Science. 1987 Feb 27;235(4792):1056–1059. doi: 10.1126/science.2434993. [DOI] [PubMed] [Google Scholar]
  43. Torseth J. W., Merigan T. C. Significance of local gamma interferon in recurrent herpes simplex infection. J Infect Dis. 1986 May;153(5):979–984. doi: 10.1093/infdis/153.5.979. [DOI] [PubMed] [Google Scholar]
  44. Wong G. H., Goeddel D. V. Tumour necrosis factors alpha and beta inhibit virus replication and synergize with interferons. 1986 Oct 30-Nov 5Nature. 323(6091):819–822. doi: 10.1038/323819a0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES