Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1995 Aug;69(8):4914–4923. doi: 10.1128/jvi.69.8.4914-4923.1995

Picornavirus-specific CD4+ T lymphocytes possessing cytolytic activity confer protection in the absence of prophylactic antibodies.

Z C Neal 1, G A Splitter 1
PMCID: PMC189306  PMID: 7609060

Abstract

Picornaviruses are a family of positive-strand RNA viruses that are responsible for a variety of devastating human and animal diseases. An attenuated strain of mengovirus (vMC24) is serologically indistinguishable from the lethal murine wild-type mengovirus and encephalomyocarditis virus (EMCV). Immunogen-specific stimulation of vMC24-immune splenocytes in vitro demonstrates preferential activation of CD4+ lymphocytes. vMC24-immune splenocytes adoptively transferred to naive recipients conferred protection against lethal EMCV challenge. Immune splenocytes, expanded in vitro, were > 92% CD4+ T lymphocytes. Interestingly, adoptive transfer of these expanded cells engendered protection against lethal challenge. In vivo depletion of CD4+ T lymphocytes prior to lethal challenge abrogated survival of transfer recipients, confirming that CD4+ T lymphocytes were essential for protection. Subsequent rechallenge of vMC24-immune splenocyte recipients with a greater EMCV dose elicited serum neutralizing antibody titers paralleling the high titers observed in vMC24-immunized mice. Unexpectedly, an augmented humoral response was absent in vMC24-specific CD4+ T-cell recipients after the secondary challenge. Moreover, comparably low serum neutralizing antibody titers failed to protect passive transfer recipients when correspondingly challenged. vMC24-immune splenocytes expanded in vitro (> 94% CD4+) lysed vMC24-infected A20.J target cells. The ability to transfer protection with primed CD4+ T cells, in the absence of primed B lymphocytes or immune sera, is novel for picornaviral infections. Consequently, mechanisms such as CD4+ cytolytic T-lymphocyte activity are implicated in mediating protection.

Full Text

The Full Text of this article is available as a PDF (384.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barger M. T., Craighead J. E. Immunomodulation of encephalomyocarditis virus-induced disease in A/J mice. J Virol. 1991 May;65(5):2676–2681. doi: 10.1128/jvi.65.5.2676-2681.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bartels T., Schäfer H., Liebermann H., Burger R., Beyer J. T-lymphocyte responses in guinea pigs vaccinated with foot-and-mouth disease virus. Vet Immunol Immunopathol. 1994 Mar;40(3):213–223. doi: 10.1016/0165-2427(94)90021-3. [DOI] [PubMed] [Google Scholar]
  3. Baxt B., Morgan D. O., Robertson B. H., Timpone C. A. Epitopes on foot-and-mouth disease virus outer capsid protein VP1 involved in neutralization and cell attachment. J Virol. 1984 Aug;51(2):298–305. doi: 10.1128/jvi.51.2.298-305.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Beck M. A., Tracy S. M. Murine cell-mediated immune response recognizes an enterovirus group-specific antigen(s). J Virol. 1989 Oct;63(10):4148–4156. doi: 10.1128/jvi.63.10.4148-4156.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bogaerts W. J., Durville-van der Oord Immunization of mice against encephalomyocarditis virus. II. Intraperitoneal and respiratory immunization with ultraviolet-inactivated vaccine: effect of Bordetella pertussis extract on the immune response. Infect Immun. 1972 Oct;6(4):513–517. doi: 10.1128/iai.6.4.513-517.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Borrow P., Welsh C. J., Nash A. A. Study of the mechanisms by which CD4+ T cells contribute to protection in Theiler's murine encephalomyelitis. Immunology. 1993 Nov;80(3):502–506. [PMC free article] [PubMed] [Google Scholar]
  7. Chain B., McCafferty I., Wallace G., Askenase P. W. Improvement of the in vitro T cell proliferation assay by a modified method that separates the antigen recognition and IL-2-dependent steps. J Immunol Methods. 1987 May 20;99(2):221–228. doi: 10.1016/0022-1759(87)90131-1. [DOI] [PubMed] [Google Scholar]
  8. Clatch R. J., Lipton H. L., Miller S. D. Characterization of Theiler's murine encephalomyelitis virus (TMEV)-specific delayed-type hypersensitivity responses in TMEV-induced demyelinating disease: correlation with clinical signs. J Immunol. 1986 Feb 1;136(3):920–927. [PubMed] [Google Scholar]
  9. Coffman R. L., Chatelain R., Leal L. M., Varkila K. Leishmania major infection in mice: a model system for the study of CD4+ T-cell subset differentiation. Res Immunol. 1991 Jan;142(1):36–40. doi: 10.1016/0923-2494(91)90009-8. [DOI] [PubMed] [Google Scholar]
  10. Dailey M. O., Fathman C. G., Butcher E. C., Pillemer E., Weissman I. Abnormal migration of T lymphocyte clones. J Immunol. 1982 May;128(5):2134–2136. [PubMed] [Google Scholar]
  11. Doherty P. C., Allan W., Eichelberger M., Carding S. R. Roles of alpha beta and gamma delta T cell subsets in viral immunity. Annu Rev Immunol. 1992;10:123–151. doi: 10.1146/annurev.iy.10.040192.001011. [DOI] [PubMed] [Google Scholar]
  12. Duke G. M., Osorio J. E., Palmenberg A. C. Attenuation of Mengo virus through genetic engineering of the 5' noncoding poly(C) tract. Nature. 1990 Feb 1;343(6257):474–476. doi: 10.1038/343474a0. [DOI] [PubMed] [Google Scholar]
  13. Duke G. M., Palmenberg A. C. Cloning and synthesis of infectious cardiovirus RNAs containing short, discrete poly(C) tracts. J Virol. 1989 Apr;63(4):1822–1826. doi: 10.1128/jvi.63.4.1822-1826.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Erb P., Grogg D., Troxler M., Kennedy M., Fluri M. CD4+ T cell-mediated killing of MHC class II-positive antigen-presenting cells. I. Characterization of target cell recognition by in vivo or in vitro activated CD4+ killer T cells. J Immunol. 1990 Feb 1;144(3):790–795. [PubMed] [Google Scholar]
  15. Fujinami R. S., Rosenthal A., Lampert P. W., Zurbriggen A., Yamada M. Survival of athymic (nu/nu) mice after Theiler's murine encephalomyelitis virus infection by passive administration of neutralizing monoclonal antibody. J Virol. 1989 May;63(5):2081–2087. doi: 10.1128/jvi.63.5.2081-2087.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Graham S., Wang E. C., Jenkins O., Borysiewicz L. K. Analysis of the human T-cell response to picornaviruses: identification of T-cell epitopes close to B-cell epitopes in poliovirus. J Virol. 1993 Mar;67(3):1627–1637. doi: 10.1128/jvi.67.3.1627-1637.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Grogg D., Hahn S., Erb P. CD4+ T cell-mediated killing of major histocompatibility complex class II-positive antigen-presenting cells (APC). III. CD4+ cytotoxic T cells induce apoptosis of APC. Eur J Immunol. 1992 Jan;22(1):267–272. doi: 10.1002/eji.1830220139. [DOI] [PubMed] [Google Scholar]
  18. Guthke R., Veckenstedt A., Güttner J., Stracke R., Bergter F. Dynamic model of the pathogenesis of Mengo virus infection in mice. Acta Virol. 1987 Aug;31(4):307–320. [PubMed] [Google Scholar]
  19. Hassin D., Fixler R., Bank H., Klein A. S., Hasin Y. Cytotoxic T lymphocytes and natural killer cell activity in the course of mengo virus infection of mice. Immunology. 1985 Dec;56(4):701–705. [PMC free article] [PubMed] [Google Scholar]
  20. Heinzel F. P., Sadick M. D., Holaday B. J., Coffman R. L., Locksley R. M. Reciprocal expression of interferon gamma or interleukin 4 during the resolution or progression of murine leishmaniasis. Evidence for expansion of distinct helper T cell subsets. J Exp Med. 1989 Jan 1;169(1):59–72. doi: 10.1084/jem.169.1.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Huber S. A. Heat-shock protein induction in adriamycin and picornavirus-infected cardiocytes. Lab Invest. 1992 Aug;67(2):218–224. [PubMed] [Google Scholar]
  22. Kolaitis G., Doymaz M., Rouse B. T. Demonstration of MHC class II-restricted cytotoxic T lymphocytes in mice against herpes simplex virus. Immunology. 1990 Sep;71(1):101–106. [PMC free article] [PubMed] [Google Scholar]
  23. Kutubuddin M., Simons J., Chow M. Poliovirus-specific major histocompatibility complex class I-restricted cytolytic T-cell epitopes in mice localize to neutralizing antigenic regions. J Virol. 1992 Oct;66(10):5967–5974. doi: 10.1128/jvi.66.10.5967-5974.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kägi D., Vignaux F., Ledermann B., Bürki K., Depraetere V., Nagata S., Hengartner H., Golstein P. Fas and perforin pathways as major mechanisms of T cell-mediated cytotoxicity. Science. 1994 Jul 22;265(5171):528–530. doi: 10.1126/science.7518614. [DOI] [PubMed] [Google Scholar]
  25. Körner H., Schliephake A., Winter J., Zimprich F., Lassmann H., Sedgwick J., Siddell S., Wege H. Nucleocapsid or spike protein-specific CD4+ T lymphocytes protect against coronavirus-induced encephalomyelitis in the absence of CD8+ T cells. J Immunol. 1991 Oct 1;147(7):2317–2323. [PubMed] [Google Scholar]
  26. Lindsley M. D., Thiemann R., Rodriguez M. Cytotoxic T cells isolated from the central nervous systems of mice infected with Theiler's virus. J Virol. 1991 Dec;65(12):6612–6620. doi: 10.1128/jvi.65.12.6612-6620.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Littaua R. A., Takeda A., Cruz J., Ennis F. A. Vaccinia virus-specific human CD4+ cytotoxic T-lymphocyte clones. J Virol. 1992 Apr;66(4):2274–2280. doi: 10.1128/jvi.66.4.2274-2280.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Muir S., Weintraub J. P., Hogle J., Bittle J. L. Neutralizing antibody to Mengo virus, induced by synthetic peptides. J Gen Virol. 1991 May;72(Pt 5):1087–1092. doi: 10.1099/0022-1317-72-5-1087. [DOI] [PubMed] [Google Scholar]
  29. Murdin A. D., Murray M. G., Wimmer E. Novel approaches to picornavirus vaccines. Adv Biotechnol Processes. 1990;14:301–323. [PubMed] [Google Scholar]
  30. Nicholas J. A., Rubino K. L., Levely M. E., Adams E. G., Collins P. L. Cytolytic T-lymphocyte responses to respiratory syncytial virus: effector cell phenotype and target proteins. J Virol. 1990 Sep;64(9):4232–4241. doi: 10.1128/jvi.64.9.4232-4241.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Nomoto A., Iizuka N., Kohara M., Arita M. Strategy for construction of live picornavirus vaccines. Vaccine. 1988 Apr;6(2):134–137. doi: 10.1016/s0264-410x(88)80015-x. [DOI] [PubMed] [Google Scholar]
  32. Pena Rossi C., McAllister A., Fiette L., Brahic M. Theiler's virus infection induces a specific cytotoxic T lymphocyte response. Cell Immunol. 1991 Dec;138(2):341–348. doi: 10.1016/0008-8749(91)90158-8. [DOI] [PubMed] [Google Scholar]
  33. Richt J. A., Schmeel A., Frese K., Carbone K. M., Narayan O., Rott R. Borna disease virus-specific T cells protect against or cause immunopathological Borna disease. J Exp Med. 1994 May 1;179(5):1467–1473. doi: 10.1084/jem.179.5.1467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Richt J. A., Stitz L. Borna disease virus-infected astrocytes function in vitro as antigen-presenting and target cells for virus-specific CD4-bearing lymphocytes. Arch Virol. 1992;124(1-2):95–109. doi: 10.1007/BF01314628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Rodriguez M., Sriram S. Successful therapy of Theiler's virus-induced demyelination (DA strain) with monoclonal anti-Lyt-2 antibody. J Immunol. 1988 May 1;140(9):2950–2955. [PubMed] [Google Scholar]
  36. Rossi C. P., Cash E., Aubert C., Coutinho A. Role of the humoral immune response in resistance to Theiler's virus infection. J Virol. 1991 Jul;65(7):3895–3899. doi: 10.1128/jvi.65.7.3895-3899.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Scott P. Host and parasite factors regulating the development of CD4+ T-cell subsets in experimental cutaneous leishmaniasis. Res Immunol. 1991 Jan;142(1):32–36. doi: 10.1016/0923-2494(91)90008-7. [DOI] [PubMed] [Google Scholar]
  38. Shinohara N., Huang Y. Y., Muroyama A. Specific suppression of antibody responses by soluble protein-specific, class II-restricted cytolytic T lymphocyte clones. Eur J Immunol. 1991 Jan;21(1):23–27. doi: 10.1002/eji.1830210105. [DOI] [PubMed] [Google Scholar]
  39. Simons J., Kutubuddin M., Chow M. Characterization of poliovirus-specific T lymphocytes in the peripheral blood of Sabin-vaccinated humans. J Virol. 1993 Mar;67(3):1262–1268. doi: 10.1128/jvi.67.3.1262-1268.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Smith D. M., Stuart F. P., Wemhoff G. A., Quintáns J., Fitch F. W. Cellular pathways for rejection of class-I-MHC--disparate skin and tumor allografts. Transplantation. 1988 Jan;45(1):168–175. doi: 10.1097/00007890-198801000-00036. [DOI] [PubMed] [Google Scholar]
  41. Sriram S., Topham D. J., Huang S. K., Rodriguez M. Treatment of encephalomyocarditis virus-induced central nervous system demyelination with monoclonal anti-T-cell antibodies. J Virol. 1989 Oct;63(10):4242–4248. doi: 10.1128/jvi.63.10.4242-4248.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Stalder T., Hahn S., Erb P. Fas antigen is the major target molecule for CD4+ T cell-mediated cytotoxicity. J Immunol. 1994 Feb 1;152(3):1127–1133. [PubMed] [Google Scholar]
  43. Sussman M. A., Shubin R. A., Kyuwa S., Stohlman S. A. T-cell-mediated clearance of mouse hepatitis virus strain JHM from the central nervous system. J Virol. 1989 Jul;63(7):3051–3056. doi: 10.1128/jvi.63.7.3051-3056.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Topham D. J., Adesina A., Shenoy M., Craighead J. E., Sriram S. Indirect role of T cells in development of polioencephalitis and encephalomyelitis induced by encephalomyocarditis virus. J Virol. 1991 Jun;65(6):3238–3245. doi: 10.1128/jvi.65.6.3238-3245.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Veckenstedt A. Pathogenicity of mengo virus to mice. I. Virological studies. Acta Virol. 1974 Nov;18(6):501–507. [PubMed] [Google Scholar]
  46. Welsh C. J., Tonks P., Nash A. A., Blakemore W. F. The effect of L3T4 T cell depletion on the pathogenesis of Theiler's murine encephalomyelitis virus infection in CBA mice. J Gen Virol. 1987 Jun;68(Pt 6):1659–1667. doi: 10.1099/0022-1317-68-6-1659. [DOI] [PubMed] [Google Scholar]
  47. Zivny J., Kurane I., Tacket C. O., Edelman R., Ennis F. A. Dengue virus-specific, human CD4+ cytotoxic T lymphocytes generated in short-term culture. Viral Immunol. 1993 Summer;6(2):143–151. doi: 10.1089/vim.1993.6.143. [DOI] [PubMed] [Google Scholar]
  48. van der Marel P., Hazendonk T. G., Henneke M. A., van Wezel A. L. Induction of neutralizing antibodies by poliovirus capsid polypeptides VP1, VP2 and VP3. Vaccine. 1983 Dec;1(1):17–22. doi: 10.1016/0264-410x(83)90007-5. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES