Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1995 Aug;69(8):4950–4956. doi: 10.1128/jvi.69.8.4950-4956.1995

Identification of the active-site residues of the L proteinase of foot-and-mouth disease virus.

M E Piccone 1, M Zellner 1, T F Kumosinski 1, P W Mason 1, M J Grubman 1
PMCID: PMC189310  PMID: 7609064

Abstract

The foot-and-mouth disease virus (FMDV) leader (L) protein is involved in autocatalytic cleavage at the L/P1 junction and in the cleavage of translation initiation factor p220, a subunit of the cap-binding protein complex. It has been suggested that this proteinase has homology to the papain-like family of cysteine proteinases, and from this information, we have investigated the active-site residues by introducing specific mutations into the L gene. Mutations of Cys-23 to Ala or His-120 to Leu resulted in enzymes that lacked cis activity at the L/VP4 cleavage site, trans activity on a truncated L-P1 substrate, and p220 cleavage activity. Mutations of Cys-23 to ser or His-110 to Leu resulted in enzymes that retained some or all cis activity and had reduced p220 cleavage. These mutations were introduced separately into a full-length FMDV cDNA, and RNA transcripts derived from these cDNAs were translated in a cell-free system and transfected into cells. The C23S mutant inefficiently cleaved at the L/P1 junction and within P1, and virus obtained from transfected cells reverted to wild type. The H110L mutant cleaved the L/P1 junction almost as well as the wild-type enzyme, and virus recovered from transfected cells retained the mutation and displayed wild-type viral protein synthesis and host shut-off kinetics.

Full Text

The Full Text of this article is available as a PDF (540.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bablanian G. M., Grubman M. J. Characterization of the foot-and-mouth disease virus 3C protease expressed in Escherichia coli. Virology. 1993 Nov;197(1):320–327. doi: 10.1006/viro.1993.1593. [DOI] [PubMed] [Google Scholar]
  2. Baxt B., Vakharia V., Moore D. M., Franke A. J., Morgan D. O. Analysis of neutralizing antigenic sites on the surface of type A12 foot-and-mouth disease virus. J Virol. 1989 May;63(5):2143–2151. doi: 10.1128/jvi.63.5.2143-2151.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Devaney M. A., Vakharia V. N., Lloyd R. E., Ehrenfeld E., Grubman M. J. Leader protein of foot-and-mouth disease virus is required for cleavage of the p220 component of the cap-binding protein complex. J Virol. 1988 Nov;62(11):4407–4409. doi: 10.1128/jvi.62.11.4407-4409.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dougherty W. G., Semler B. L. Expression of virus-encoded proteinases: functional and structural similarities with cellular enzymes. Microbiol Rev. 1993 Dec;57(4):781–822. doi: 10.1128/mr.57.4.781-822.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Etchison D., Milburn S. C., Edery I., Sonenberg N., Hershey J. W. Inhibition of HeLa cell protein synthesis following poliovirus infection correlates with the proteolysis of a 220,000-dalton polypeptide associated with eucaryotic initiation factor 3 and a cap binding protein complex. J Biol Chem. 1982 Dec 25;257(24):14806–14810. [PubMed] [Google Scholar]
  6. Gorbalenya A. E., Koonin E. V., Lai M. M. Putative papain-related thiol proteases of positive-strand RNA viruses. Identification of rubi- and aphthovirus proteases and delineation of a novel conserved domain associated with proteases of rubi-, alpha- and coronaviruses. FEBS Lett. 1991 Aug 19;288(1-2):201–205. doi: 10.1016/0014-5793(91)81034-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Grubman M. J., Morgan D. O., Kendall J., Baxt B. Capsid intermediates assembled in a foot-and-mouth disease virus genome RNA-programmed cell-free translation system and in infected cells. J Virol. 1985 Oct;56(1):120–126. doi: 10.1128/jvi.56.1.120-126.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene. 1989 Apr 15;77(1):51–59. doi: 10.1016/0378-1119(89)90358-2. [DOI] [PubMed] [Google Scholar]
  9. Kamphuis I. G., Kalk K. H., Swarte M. B., Drenth J. Structure of papain refined at 1.65 A resolution. J Mol Biol. 1984 Oct 25;179(2):233–256. doi: 10.1016/0022-2836(84)90467-4. [DOI] [PubMed] [Google Scholar]
  10. Kean K. M., Howell M. T., Grünert S., Girard M., Jackson R. J. Substitution mutations at the putative catalytic triad of the poliovirus 3C protease have differential effects on cleavage at different sites. Virology. 1993 May;194(1):360–364. doi: 10.1006/viro.1993.1268. [DOI] [PubMed] [Google Scholar]
  11. Kirchweger R., Ziegler E., Lamphear B. J., Waters D., Liebig H. D., Sommergruber W., Sobrino F., Hohenadl C., Blaas D., Rhoads R. E. Foot-and-mouth disease virus leader proteinase: purification of the Lb form and determination of its cleavage site on eIF-4 gamma. J Virol. 1994 Sep;68(9):5677–5684. doi: 10.1128/jvi.68.9.5677-5684.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kleina L. G., Grubman M. J. Antiviral effects of a thiol protease inhibitor on foot-and-mouth disease virus. J Virol. 1992 Dec;66(12):7168–7175. doi: 10.1128/jvi.66.12.7168-7175.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kumosinski T. F., King G., Farrell H. M., Jr An energy-minimized casein submicelle working model. J Protein Chem. 1994 Nov;13(8):681–700. doi: 10.1007/BF01886952. [DOI] [PubMed] [Google Scholar]
  14. Lawson M. A., Semler B. L. Poliovirus thiol proteinase 3C can utilize a serine nucleophile within the putative catalytic triad. Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):9919–9923. doi: 10.1073/pnas.88.22.9919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mason P. W., Rieder E., Baxt B. RGD sequence of foot-and-mouth disease virus is essential for infecting cells via the natural receptor but can be bypassed by an antibody-dependent enhancement pathway. Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1932–1936. doi: 10.1073/pnas.91.5.1932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Medina M., Domingo E., Brangwyn J. K., Belsham G. J. The two species of the foot-and-mouth disease virus leader protein, expressed individually, exhibit the same activities. Virology. 1993 May;194(1):355–359. doi: 10.1006/viro.1993.1267. [DOI] [PubMed] [Google Scholar]
  17. Piccone M. E., Sira S., Zellner M., Grubman M. J. Expression in Escherichia coli and purification of biologically active L proteinase of foot-and-mouth disease virus. Virus Res. 1995 Mar;35(3):263–275. doi: 10.1016/0168-1702(94)00084-P. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rieder E., Bunch T., Brown F., Mason P. W. Genetically engineered foot-and-mouth disease viruses with poly(C) tracts of two nucleotides are virulent in mice. J Virol. 1993 Sep;67(9):5139–5145. doi: 10.1128/jvi.67.9.5139-5145.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sangar D. V., Newton S. E., Rowlands D. J., Clarke B. E. All foot and mouth disease virus serotypes initiate protein synthesis at two separate AUGs. Nucleic Acids Res. 1987 Apr 24;15(8):3305–3315. doi: 10.1093/nar/15.8.3305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Strebel K., Beck E. A second protease of foot-and-mouth disease virus. J Virol. 1986 Jun;58(3):893–899. doi: 10.1128/jvi.58.3.893-899.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Vakharia V. N., Devaney M. A., Moore D. M., Dunn J. J., Grubman M. J. Proteolytic processing of foot-and-mouth disease virus polyproteins expressed in a cell-free system from clone-derived transcripts. J Virol. 1987 Oct;61(10):3199–3207. doi: 10.1128/jvi.61.10.3199-3207.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES