Abstract
The mechanism of viral capsid assembly is an intriguing problem because of its fundamental importance to research on synthetic viral particle vaccines, gene delivery systems, antiviral drugs, chimeric viruses displaying antigens or ligands, and the study of macromolecular interactions. The genes coding for the scaffolding (gp7), capsid (gp8), and portal vertex (gp10) proteins of the procapsid of bacteriophage phi 29 of Bacillus subtilis were expressed in Escherichia coli individually or in combination to study the mechanism of phi 29 procapsid assembly. When expressed alone, gp7 existed as a soluble monomer, gp8 aggregated into inclusion bodies, and gp10 formed the portal vertex. Circular dichroisin spectrum analysis indicated that gp7 is mainly composed of alpha helices. When two of the proteins were coexpressed, gp7 and gp8 assembled into procapsid-like particles with variable sizes and shapes, gp7 and gp10 formed unstable complexes, and gp8 and gp10 did not interact. These results suggested that gp7 served as a bridge for gp8 and gp10. When gp7, gp8, and gp10 were coexpressed, active procapsids were produced. Complementation of extracts containing one or two structural components could not produce active procapsids, indicating that no stable intermediates were formed. A dimeric gp7 concatemer promoted the solubility of gp8 but was inactive in the assembly of procapsid or procapsid-like particles. Mutation at the C terminus of gp7 prevented it from interacting with gp8, indicating that this part of gp7 may be important for interaction with gp8. Coexpression of the portal protein (gp20) of phage T4 with phi 29 gp7 and gp8 revealed the lack of interaction between T4 gp20 and phi 29 gp7 and/or gp8. Perturbing the ratio of the three structural proteins by duplicating one or another gene did not reduce the yield of potentially infectious particles. Changing of the order of gene arrangement in plasmids did not affect the formation of active procapsids significantly. These results indicate that phi 29 procapsid assembly deviated from the single-assembly pathway and that coexistence of all three components with a threshold concentration was required for procapsid assembly. The trimolecular interaction was so rapid that no true intermediates could be isolated. This finding is in accord with the result of capsid assembly obtained by the equilibrium model proposed by A. Zlotnick (J. Mol. Biol. 241:59-67, 1994).
Full Text
The Full Text of this article is available as a PDF (919.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bazinet C., King J. Initiation of P22 procapsid assembly in vivo. J Mol Biol. 1988 Jul 5;202(1):77–86. doi: 10.1016/0022-2836(88)90520-7. [DOI] [PubMed] [Google Scholar]
- Bazinet C., King J. The DNA translocating vertex of dsDNA bacteriophage. Annu Rev Microbiol. 1985;39:109–129. doi: 10.1146/annurev.mi.39.100185.000545. [DOI] [PubMed] [Google Scholar]
- Black L. W. DNA packaging in dsDNA bacteriophages. Annu Rev Microbiol. 1989;43:267–292. doi: 10.1146/annurev.mi.43.100189.001411. [DOI] [PubMed] [Google Scholar]
- Carazo J. M., Donate L. E., Herranz L., Secilla J. P., Carrascosa J. L. Three-dimensional reconstruction of the connector of bacteriophage phi 29 at 1.8 nm resolution. J Mol Biol. 1986 Dec 20;192(4):853–867. doi: 10.1016/0022-2836(86)90033-1. [DOI] [PubMed] [Google Scholar]
- Casjens S. R., Hendrix R. W. Locations and amounts of major structural proteins in bacteriophage lambda. J Mol Biol. 1974 Sep 15;88(2):535–545. doi: 10.1016/0022-2836(74)90500-2. [DOI] [PubMed] [Google Scholar]
- Donate L. E., Carrascosa J. L. Characterization of a versatile in vitro DNA-packaging system based on hybrid lambda/phi 29 proheads. Virology. 1991 Jun;182(2):534–544. doi: 10.1016/0042-6822(91)90594-2. [DOI] [PubMed] [Google Scholar]
- Duda R. L., Wall J. S., Hainfeld J. F., Sweet R. M., Eiserling F. A. Mass distribution of a probable tail-length-determining protein in bacteriophage T4. Proc Natl Acad Sci U S A. 1985 Aug;82(16):5550–5554. doi: 10.1073/pnas.82.16.5550. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Earnshaw W. C., Casjens S. R. DNA packaging by the double-stranded DNA bacteriophages. Cell. 1980 Sep;21(2):319–331. doi: 10.1016/0092-8674(80)90468-7. [DOI] [PubMed] [Google Scholar]
- Frackman S., Siegele D. A., Feiss M. A functional domain of bacteriophage lambda terminase for prohead binding. J Mol Biol. 1984 Dec 5;180(2):283–300. doi: 10.1016/s0022-2836(84)80005-4. [DOI] [PubMed] [Google Scholar]
- French T. J., Roy P. Synthesis of bluetongue virus (BTV) corelike particles by a recombinant baculovirus expressing the two major structural core proteins of BTV. J Virol. 1990 Apr;64(4):1530–1536. doi: 10.1128/jvi.64.4.1530-1536.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gheysen D., Jacobs E., de Foresta F., Thiriart C., Francotte M., Thines D., De Wilde M. Assembly and release of HIV-1 precursor Pr55gag virus-like particles from recombinant baculovirus-infected insect cells. Cell. 1989 Oct 6;59(1):103–112. doi: 10.1016/0092-8674(89)90873-8. [DOI] [PubMed] [Google Scholar]
- Guo P. X., Bailey S., Bodley J. W., Anderson D. Characterization of the small RNA of the bacteriophage phi 29 DNA packaging machine. Nucleic Acids Res. 1987 Sep 11;15(17):7081–7090. doi: 10.1093/nar/15.17.7081. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guo P. X., Erickson S., Anderson D. A small viral RNA is required for in vitro packaging of bacteriophage phi 29 DNA. Science. 1987 May 8;236(4802):690–694. doi: 10.1126/science.3107124. [DOI] [PubMed] [Google Scholar]
- Guo P. X., Erickson S., Xu W., Olson N., Baker T. S., Anderson D. Regulation of the phage phi 29 prohead shape and size by the portal vertex. Virology. 1991 Jul;183(1):366–373. doi: 10.1016/0042-6822(91)90149-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guo P. X., Goebel S., Perkus M. E., Taylor J., Norton E., Allen G., Languet B., Desmettre P., Paoletti E. Coexpression by vaccinia virus recombinants of equine herpesvirus 1 glycoproteins gp13 and gp14 results in potentiated immunity. J Virol. 1990 May;64(5):2399–2406. doi: 10.1128/jvi.64.5.2399-2406.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guo P. X., Moss B. Interaction and mutual stabilization of the two subunits of vaccinia virus mRNA capping enzyme coexpressed in Escherichia coli. Proc Natl Acad Sci U S A. 1990 Jun;87(11):4023–4027. doi: 10.1073/pnas.87.11.4023. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guo P. X., Rajagopal B. S., Anderson D., Erickson S., Lee C. S. sRNA of phage phi 29 of Bacillus subtilis mediates DNA packaging of phi 29 proheads assembled in Escherichia coli. Virology. 1991 Nov;185(1):395–400. doi: 10.1016/0042-6822(91)90787-c. [DOI] [PubMed] [Google Scholar]
- Guo P., Grimes S., Anderson D. A defined system for in vitro packaging of DNA-gp3 of the Bacillus subtilis bacteriophage phi 29. Proc Natl Acad Sci U S A. 1986 May;83(10):3505–3509. doi: 10.1073/pnas.83.10.3505. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guo P., Scholz E., Maloney B., Welniak E. Construction of recombinant avian infectious laryngotracheitis virus expressing the beta-galactosidase gene and DNA sequencing of the insertion region. Virology. 1994 Aug 1;202(2):771–781. doi: 10.1006/viro.1994.1399. [DOI] [PubMed] [Google Scholar]
- Guo P., Scholz E., Turek J., Nodgreen R., Maloney B. Assembly pathway of avian infectious laryngotracheitis virus. Am J Vet Res. 1993 Dec;54(12):2031–2039. [PubMed] [Google Scholar]
- Hagen E. W., Reilly B. E., Tosi M. E., Anderson D. L. Analysis of gene function of bacteriophage phi 29 of Bacillus subtilis: identification of cistrons essential for viral assembly. J Virol. 1976 Aug;19(2):501–517. doi: 10.1128/jvi.19.2.501-517.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ibáez C., García J. A., Carrascosa J. L., Salas M. Overproduction and purification of the connector protein of Bacillus subtilis phage phi 29. Nucleic Acids Res. 1984 Mar 12;12(5):2351–2365. doi: 10.1093/nar/12.5.2351. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karacostas V., Nagashima K., Gonda M. A., Moss B. Human immunodeficiency virus-like particles produced by a vaccinia virus expression vector. Proc Natl Acad Sci U S A. 1989 Nov;86(22):8964–8967. doi: 10.1073/pnas.86.22.8964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kellenberger E. Form determination of the heads of bacteriophages. Eur J Biochem. 1990 Jun 20;190(2):233–248. doi: 10.1111/j.1432-1033.1990.tb15568.x. [DOI] [PubMed] [Google Scholar]
- Kikuchi Y., King J. Genetic control of bacteriophage T4 baseplate morphogenesis. I. Sequential assembly of the major precursor, in vivo and in vitro. J Mol Biol. 1975 Dec 25;99(4):645–672. doi: 10.1016/s0022-2836(75)80178-1. [DOI] [PubMed] [Google Scholar]
- Kikuchi Y., King J. Genetic control of bacteriophage T4 baseplate morphogenesis. II. Mutants unable to form the central part of the baseplate. J Mol Biol. 1975 Dec 25;99(4):673–694. doi: 10.1016/s0022-2836(75)80179-3. [DOI] [PubMed] [Google Scholar]
- Kikuchi Y., King J. Genetic control of bacteriophage T4 baseplate morphogenesis. III. Formation of the central plug and overall assembly pathway. J Mol Biol. 1975 Dec 25;99(4):695–716. doi: 10.1016/s0022-2836(75)80180-x. [DOI] [PubMed] [Google Scholar]
- Ladin B. F., Blankenship M. L., Ben-Porat T. Replication of herpesvirus DNA. V. Maturation of concatemeric DNA of pseudorabies virus to genome length is related to capsid formation. J Virol. 1980 Mar;33(3):1151–1164. doi: 10.1128/jvi.33.3.1151-1164.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee C. S., Guo P. A highly sensitive system for the in vitro assembly of bacteriophage phi 29 of Bacillus subtilis. Virology. 1994 Aug 1;202(2):1039–1042. doi: 10.1006/viro.1994.1434. [DOI] [PubMed] [Google Scholar]
- Lee C. S., Guo P. In vitro assembly of infectious virions of double-stranded DNA phage phi 29 from cloned gene products and synthetic nucleic acids. J Virol. 1995 Aug;69(8):5018–5023. doi: 10.1128/jvi.69.8.5018-5023.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mesyanzhinov V. V., Sobolev B. N., Marusich E. I., Prilipov A. G., Efimov V. P. A proposed structure of bacteriophage T4 gene product 22--a major prohead scaffolding core protein. J Struct Biol. 1990 Jul-Sep;104(1-3):24–31. doi: 10.1016/1047-8477(90)90053-f. [DOI] [PubMed] [Google Scholar]
- Michaud G., Zachary A., Rao V. B., Black L. W. Membrane-associated assembly of a phage T4 DNA entrance vertex structure studied with expression vectors. J Mol Biol. 1989 Oct 20;209(4):667–681. doi: 10.1016/0022-2836(89)90599-8. [DOI] [PubMed] [Google Scholar]
- Murialdo H., Becker A. A genetic analysis of bacteriophage lambda prohead assembly in vitro. J Mol Biol. 1978 Oct 15;125(1):57–74. doi: 10.1016/0022-2836(78)90254-1. [DOI] [PubMed] [Google Scholar]
- Murialdo H., Becker A. Head morphogenesis of complex double-stranded deoxyribonucleic acid bacteriophages. Microbiol Rev. 1978 Sep;42(3):529–576. doi: 10.1128/mr.42.3.529-576.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nelson R. A., Reilly B. E., Anderson D. L. Morphogenesis of bacteriophage phi 29 of Bacillus subtilis: preliminary isolation and characterization of intermediate particles of the assembly pathway. J Virol. 1976 Aug;19(2):518–532. doi: 10.1128/jvi.19.2.518-532.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Newcomb W. W., Brown J. C. Structure of the herpes simplex virus capsid: effects of extraction with guanidine hydrochloride and partial reconstitution of extracted capsids. J Virol. 1991 Feb;65(2):613–620. doi: 10.1128/jvi.65.2.613-620.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prevelige P. E., Jr, Thomas D., King J. Scaffolding protein regulates the polymerization of P22 coat subunits into icosahedral shells in vitro. J Mol Biol. 1988 Aug 20;202(4):743–757. doi: 10.1016/0022-2836(88)90555-4. [DOI] [PubMed] [Google Scholar]
- Rajagopal B. S., Reilly B. E., Anderson D. L. Bacillus subtilis mutants defective in bacteriophage phi 29 head assembly. J Bacteriol. 1993 Apr;175(8):2357–2362. doi: 10.1128/jb.175.8.2357-2362.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reilly B. E., Nelson R. A., Anderson D. L. Morphogenesis of bacteriophage phi 29 of Bacillus subtilis: mapping and functional analysis of the head fiber gene. J Virol. 1977 Oct;24(1):363–377. doi: 10.1128/jvi.24.1.363-377.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosenberg A. H., Lade B. N., Chui D. S., Lin S. W., Dunn J. J., Studier F. W. Vectors for selective expression of cloned DNAs by T7 RNA polymerase. Gene. 1987;56(1):125–135. doi: 10.1016/0378-1119(87)90165-x. [DOI] [PubMed] [Google Scholar]
- Six E. W., Sunshine M. G., Williams J., Haggård-Ljungquist E., Lindqvist B. H. Morphopoietic switch mutations of bacteriophage P2. Virology. 1991 May;182(1):34–46. doi: 10.1016/0042-6822(91)90645-r. [DOI] [PubMed] [Google Scholar]
- Tosi M. E., Reilly B. E., Anderson D. L. Morphogenesis of bacteriophage phi29 of Bacillus subtilis: cleavage and assembly of the neck appendage protein. J Virol. 1975 Nov;16(5):1282–1295. doi: 10.1128/jvi.16.5.1282-1295.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Traub F., Keller B., Kuhn A., Maeder M. Isolation of the prohead core of bacteriophage T4 after cross-linking and determination of protein composition. J Virol. 1984 Mar;49(3):902–908. doi: 10.1128/jvi.49.3.902-908.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Traub F., Maeder M. Formation of the prohead core of bacteriophage T4 in vivo. J Virol. 1984 Mar;49(3):892–901. doi: 10.1128/jvi.49.3.892-901.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wichitwechkarn J., Bailey S., Bodley J. W., Anderson D. Prohead RNA of bacteriophage phi 29: size, stoichiometry and biological activity. Nucleic Acids Res. 1989 May 11;17(9):3459–3468. doi: 10.1093/nar/17.9.3459. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williams R. C., Richards K. E. Letter: Capsid structure of bacteriophage lambda. J Mol Biol. 1974 Sep 15;88(2):547–550. doi: 10.1016/0022-2836(74)90501-4. [DOI] [PubMed] [Google Scholar]
- Yang J. T., Wu C. S., Martinez H. M. Calculation of protein conformation from circular dichroism. Methods Enzymol. 1986;130:208–269. doi: 10.1016/0076-6879(86)30013-2. [DOI] [PubMed] [Google Scholar]
- Zhang C., Lee C. S., Guo P. The proximate 5' and 3' ends of the 120-base viral RNA (pRNA) are crucial for the packaging of bacteriophage phi 29 DNA. Virology. 1994 May 15;201(1):77–85. doi: 10.1006/viro.1994.1267. [DOI] [PubMed] [Google Scholar]
- Zhang C., Trottier M., Guo P. Circularly permuted viral pRNA active and specific in the packaging of bacteriophage phi 29 DNA. Virology. 1995 Mar 10;207(2):442–451. doi: 10.1006/viro.1995.1103. [DOI] [PubMed] [Google Scholar]
- Zlotnick A. To build a virus capsid. An equilibrium model of the self assembly of polyhedral protein complexes. J Mol Biol. 1994 Aug 5;241(1):59–67. doi: 10.1006/jmbi.1994.1473. [DOI] [PubMed] [Google Scholar]