Abstract
The binding domains of four monoclonal antibodies (MAbs) specific for the M protein of the PUR46-MAD strain of transmissible gastroenteritis coronavirus (TGEV) have been located in the 46 carboxy-terminal amino acids of the protein by studying the binding of MAbs to recombinant M protein fragments. Immunoelectron microscopy using these MAbs demonstrated that in a significant proportion of the M protein molecules, the carboxy terminus is exposed on the external surface both in purified viruses and in nascent TGEV virions that recently exited infected swine testis cells. The same MAbs specifically neutralized the infectivity of the PUR46-MAD strain, indicating that the C-terminal domain of M protein is exposed on infectious viruses. This topology of TGEV M protein probably coexists with the structure currently described for the M protein of coronaviruses, which consists of an exposed amino terminus and an intravirion carboxy-terminal domain. The presence of a detectable number of M protein molecules with their carboxy termini exposed on the surface of the virion has relevance for viral function, since it has been shown that the carboxy terminus of M protein is immunodominant and that antibodies specific for this domain both neutralize TGEV and mediate the complement-dependent lysis of TGEV-infected cells.
Full Text
The Full Text of this article is available as a PDF (3.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Armstrong J., Niemann H., Smeekens S., Rottier P., Warren G. Sequence and topology of a model intracellular membrane protein, E1 glycoprotein, from a coronavirus. Nature. 1984 Apr 19;308(5961):751–752. doi: 10.1038/308751a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boursnell M. E., Brown T. D., Binns M. M. Sequence of the membrane protein gene from avian coronavirus IBV. Virus Res. 1984;1(4):303–313. doi: 10.1016/0168-1702(84)90019-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Britton P., Cármenes R. S., Page K. W., Garwes D. J. The integral membrane protein from a virulent isolate of transmissible gastroenteritis virus: molecular characterization, sequence and expression in Escherichia coli. Mol Microbiol. 1988 Jul;2(4):497–505. doi: 10.1111/j.1365-2958.1988.tb00056.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burnette W. N. "Western blotting": electrophoretic transfer of proteins from sodium dodecyl sulfate--polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem. 1981 Apr;112(2):195–203. doi: 10.1016/0003-2697(81)90281-5. [DOI] [PubMed] [Google Scholar]
- Carrascosa J. L. Immunoelectron microscopical studies on viruses. Electron Microsc Rev. 1988;1(1):1–16. doi: 10.1016/s0892-0354(98)90003-x. [DOI] [PubMed] [Google Scholar]
- Correa I., Jiménez G., Suñ C., Bullido M. J., Enjuanes L. Antigenic structure of the E2 glycoprotein from transmissible gastroenteritis coronavirus. Virus Res. 1988 Apr;10(1):77–93. doi: 10.1016/0168-1702(88)90059-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Delmas B., Gelfi J., Laude H. Antigenic structure of transmissible gastroenteritis virus. II. Domains in the peplomer glycoprotein. J Gen Virol. 1986 Jul;67(Pt 7):1405–1418. doi: 10.1099/0022-1317-67-7-1405. [DOI] [PubMed] [Google Scholar]
- Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gebauer F., Posthumus W. P., Correa I., Suñ C., Smerdou C., Sánchez C. M., Lenstra J. A., Meloen R. H., Enjuanes L. Residues involved in the antigenic sites of transmissible gastroenteritis coronavirus S glycoprotein. Virology. 1991 Jul;183(1):225–238. doi: 10.1016/0042-6822(91)90135-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Godet M., L'Haridon R., Vautherot J. F., Laude H. TGEV corona virus ORF4 encodes a membrane protein that is incorporated into virions. Virology. 1992 Jun;188(2):666–675. doi: 10.1016/0042-6822(92)90521-P. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Griffiths G., Rottier P. Cell biology of viruses that assemble along the biosynthetic pathway. Semin Cell Biol. 1992 Oct;3(5):367–381. doi: 10.1016/1043-4682(92)90022-N. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jiménez G., Correa I., Melgosa M. P., Bullido M. J., Enjuanes L. Critical epitopes in transmissible gastroenteritis virus neutralization. J Virol. 1986 Oct;60(1):131–139. doi: 10.1128/jvi.60.1.131-139.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kapke P. A., Brian D. A. Sequence analysis of the porcine transmissible gastroenteritis coronavirus nucleocapsid protein gene. Virology. 1986 May;151(1):41–49. doi: 10.1016/0042-6822(86)90102-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kapke P. A., Tung F. Y., Hogue B. G., Brian D. A., Woods R. D., Wesley R. The amino-terminal signal peptide on the porcine transmissible gastroenteritis coronavirus matrix protein is not an absolute requirement for membrane translocation and glycosylation. Virology. 1988 Aug;165(2):367–376. doi: 10.1016/0042-6822(88)90581-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lapps W., Hogue B. G., Brian D. A. Sequence analysis of the bovine coronavirus nucleocapsid and matrix protein genes. Virology. 1987 Mar;157(1):47–57. doi: 10.1016/0042-6822(87)90312-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laude H., Chapsal J. M., Gelfi J., Labiau S., Grosclaude J. Antigenic structure of transmissible gastroenteritis virus. I. Properties of monoclonal antibodies directed against virion proteins. J Gen Virol. 1986 Jan;67(Pt 1):119–130. doi: 10.1099/0022-1317-67-1-119. [DOI] [PubMed] [Google Scholar]
- Laude H., Rasschaert D., Huet J. C. Sequence and N-terminal processing of the transmembrane protein E1 of the coronavirus transmissible gastroenteritis virus. J Gen Virol. 1987 Jun;68(Pt 6):1687–1693. doi: 10.1099/0022-1317-68-6-1687. [DOI] [PubMed] [Google Scholar]
- Laviada M. D., Videgain S. P., Moreno L., Alonso F., Enjuanes L., Escribano J. M. Expression of swine transmissible gastroenteritis virus envelope antigens on the surface of infected cells: epitopes externally exposed. Virus Res. 1990 Jul;16(3):247–254. doi: 10.1016/0168-1702(90)90051-C. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Locker J. K., Klumperman J., Oorschot V., Horzinek M. C., Geuze H. J., Rottier P. J. The cytoplasmic tail of mouse hepatitis virus M protein is essential but not sufficient for its retention in the Golgi complex. J Biol Chem. 1994 Nov 11;269(45):28263–28269. [PubMed] [Google Scholar]
- Locker J. K., Rose J. K., Horzinek M. C., Rottier P. J. Membrane assembly of the triple-spanning coronavirus M protein. Individual transmembrane domains show preferred orientation. J Biol Chem. 1992 Oct 25;267(30):21911–21918. doi: 10.1016/S0021-9258(19)36699-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McClurkin A. W., Norman J. O. Studies on transmissible gastroenteritis of swine. II. Selected characteristics of a cytopathogenic virus common to five isolates from transmissible gastroenteritis. Can J Comp Med Vet Sci. 1966 Jul;30(7):190–198. [PMC free article] [PubMed] [Google Scholar]
- Menéndez-Arias L., Risco C., Pinto da Silva P., Oroszlan S. Purification of immature cores of mouse mammary tumor virus and immunolocalization of protein domains. J Virol. 1992 Sep;66(9):5615–5620. doi: 10.1128/jvi.66.9.5615-5620.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rasschaert D., Laude H. The predicted primary structure of the peplomer protein E2 of the porcine coronavirus transmissible gastroenteritis virus. J Gen Virol. 1987 Jul;68(Pt 7):1883–1890. doi: 10.1099/0022-1317-68-7-1883. [DOI] [PubMed] [Google Scholar]
- Risco C., Carrascosa J. L., Bosch M. A. Uptake and subcellular distribution of Escherichia coli lipopolysaccharide by isolated rat type II pneumocytes. J Histochem Cytochem. 1991 May;39(5):607–615. doi: 10.1177/39.5.2016511. [DOI] [PubMed] [Google Scholar]
- Risco C., Pinto da Silva P. Cellular functions during activation and damage by pathogens: immunogold studies of the interaction of bacterial endotoxins with target cells. Microsc Res Tech. 1995 Jun 1;31(2):141–158. doi: 10.1002/jemt.1070310206. [DOI] [PubMed] [Google Scholar]
- Rottier P. J., Horzinek M. C., van der Zeijst B. A. Viral protein synthesis in mouse hepatitis virus strain A59-infected cells: effect of tunicamycin. J Virol. 1981 Nov;40(2):350–357. doi: 10.1128/jvi.40.2.350-357.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rottier P. J., Welling G. W., Welling-Wester S., Niesters H. G., Lenstra J. A., Van der Zeijst B. A. Predicted membrane topology of the coronavirus protein E1. Biochemistry. 1986 Mar 25;25(6):1335–1339. doi: 10.1021/bi00354a022. [DOI] [PubMed] [Google Scholar]
- Rottier P., Brandenburg D., Armstrong J., van der Zeijst B., Warren G. Assembly in vitro of a spanning membrane protein of the endoplasmic reticulum: the E1 glycoprotein of coronavirus mouse hepatitis virus A59. Proc Natl Acad Sci U S A. 1984 Mar;81(5):1421–1425. doi: 10.1073/pnas.81.5.1421. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rüther U., Müller-Hill B. Easy identification of cDNA clones. EMBO J. 1983;2(10):1791–1794. doi: 10.1002/j.1460-2075.1983.tb01659.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sachs D. H., Leight G., Cone J., Schwarz S., Stuart L., Rosenberg S. Transplantation in miniature swine. I. Fixation of the major histocompatibility complex. Transplantation. 1976 Dec;22(6):559–567. doi: 10.1097/00007890-197612000-00004. [DOI] [PubMed] [Google Scholar]
- Spaan W., Cavanagh D., Horzinek M. C. Coronaviruses: structure and genome expression. J Gen Virol. 1988 Dec;69(Pt 12):2939–2952. doi: 10.1099/0022-1317-69-12-2939. [DOI] [PubMed] [Google Scholar]
- Sturman L. S. The structure and behavior of coronavirus A59 glycoproteins. Adv Exp Med Biol. 1981;142:1–17. doi: 10.1007/978-1-4757-0456-3_1. [DOI] [PubMed] [Google Scholar]
- Suñ C., Jiménez G., Correa I., Bullido M. J., Gebauer F., Smerdou C., Enjuanes L. Mechanisms of transmissible gastroenteritis coronavirus neutralization. Virology. 1990 Aug;177(2):559–569. doi: 10.1016/0042-6822(90)90521-R. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sánchez C. M., Jiménez G., Laviada M. D., Correa I., Suñ C., Bullido M. j., Gebauer F., Smerdou C., Callebaut P., Escribano J. M. Antigenic homology among coronaviruses related to transmissible gastroenteritis virus. Virology. 1990 Feb;174(2):410–417. doi: 10.1016/0042-6822(90)90094-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tooze S. A., Stanley K. K. Identification of two epitopes in the carboxyterminal 15 amino acids of the E1 glycoprotein of mouse hepatitis virus A59 by using hybrid proteins. J Virol. 1986 Dec;60(3):928–934. doi: 10.1128/jvi.60.3.928-934.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woods R. D., Wesley R. D., Kapke P. A. Complement-dependent neutralization of transmissible gastroenteritis virus by monoclonal antibodies. Adv Exp Med Biol. 1987;218:493–500. doi: 10.1007/978-1-4684-1280-2_64. [DOI] [PubMed] [Google Scholar]