Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1995 Sep;69(9):5431–5436. doi: 10.1128/jvi.69.9.5431-5436.1995

Analysis of resistance to human immunodeficiency virus type 1 protease inhibitors by using matched bacterial expression and proviral infection vectors.

B Maschera 1, E Furfine 1, E D Blair 1
PMCID: PMC189389  PMID: 7636988

Abstract

There are already reports, from clinical trials with human immunodeficiency virus type 1 protease inhibitors, of the emergence of drug-resistant mutants which have one or more point mutations in their protease genes. To examine roles of individual and multiple amino acid substitutions in terms of altered enzyme and virus drug sensitivities, we have produced matched vectors for bacterial expression and virus production. Both vectors accept the same restriction enzyme fragment, produced by PCR or PCR-mutagenesis of the protease gene, allowing parallel expression of mutant enzymes in Escherichia coli and in recombinant viruses. The utility of this vector system was demonstrated by using protease variants glycine to valine at amino acid 48 (G48V) and leucine to methionine at amino acid 90 (L90M) identified after passage of HIV-1 in the Roche phase II clinical trial protease inhibitor Ro 31-8959 (H. Jacobsen, K. Yasargil, D. L. Winslow, J. C. Craig, A. Krohn, I. B. Duncan, and J. Mous, Virology 206:527, 1995). G48V, L90M, and G48V/L90M exhibited successively less processing in vitro than the wild-type enzyme, and the purified enzymes were 220-, 20-, and 720-fold, respectively, less sensitive to Ro 31-8959. The reduced enzyme sensitivity correlated directly with the sensitivities of the matched recombinant viruses, in that individual mutations L90M and G48V conferred 2-fold and 4- to 6-fold increases in 50% inhibitory concentration, respectively, whereas G48V/L90M was 8 to 10 times less sensitive to Ro 31-8959. A proviral vector with the entire protease gene deleted was constructed for use as an in vivo recombination target for an overlapping protease PCR fragment, generating wild-type infectious virus. Finally, direct ligation of restriction fragments, generated from random PCR mutagenesis, into the proviral vector should provide a library of protease mutations that allow extremely rapid selection of highly resistant viral variants.

Full Text

The Full Text of this article is available as a PDF (412.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Craig J. C., Duncan I. B., Hockley D., Grief C., Roberts N. A., Mills J. S. Antiviral properties of Ro 31-8959, an inhibitor of human immunodeficiency virus (HIV) proteinase. Antiviral Res. 1991 Dec;16(4):295–305. doi: 10.1016/0166-3542(91)90045-s. [DOI] [PubMed] [Google Scholar]
  2. Debouck C. The HIV-1 protease as a therapeutic target for AIDS. AIDS Res Hum Retroviruses. 1992 Feb;8(2):153–164. doi: 10.1089/aid.1992.8.153. [DOI] [PubMed] [Google Scholar]
  3. Fisher A. G., Collalti E., Ratner L., Gallo R. C., Wong-Staal F. A molecular clone of HTLV-III with biological activity. Nature. 1985 Jul 18;316(6025):262–265. doi: 10.1038/316262a0. [DOI] [PubMed] [Google Scholar]
  4. Fisher A. G., Feinberg M. B., Josephs S. F., Harper M. E., Marselle L. M., Reyes G., Gonda M. A., Aldovini A., Debouk C., Gallo R. C. The trans-activator gene of HTLV-III is essential for virus replication. 1986 Mar 27-Apr 2Nature. 320(6060):367–371. doi: 10.1038/320367a0. [DOI] [PubMed] [Google Scholar]
  5. Göttlinger H. G., Dorfman T., Sodroski J. G., Haseltine W. A. Effect of mutations affecting the p6 gag protein on human immunodeficiency virus particle release. Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3195–3199. doi: 10.1073/pnas.88.8.3195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ho D. D., Toyoshima T., Mo H., Kempf D. J., Norbeck D., Chen C. M., Wideburg N. E., Burt S. K., Erickson J. W., Singh M. K. Characterization of human immunodeficiency virus type 1 variants with increased resistance to a C2-symmetric protease inhibitor. J Virol. 1994 Mar;68(3):2016–2020. doi: 10.1128/jvi.68.3.2016-2020.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hostomsky Z., Appelt K., Ogden R. C. High-level expression of self-processed HIV-1 protease in Escherichia coli using a synthetic gene. Biochem Biophys Res Commun. 1989 Jun 30;161(3):1056–1063. doi: 10.1016/0006-291x(89)91350-8. [DOI] [PubMed] [Google Scholar]
  8. Hui J. O., Tomasselli A. G., Reardon I. M., Lull J. M., Brunner D. P., Tomich C. S., Heinrikson R. L. Large scale purification and refolding of HIV-1 protease from Escherichia coli inclusion bodies. J Protein Chem. 1993 Jun;12(3):323–327. doi: 10.1007/BF01028194. [DOI] [PubMed] [Google Scholar]
  9. Jacobsen H., Yasargil K., Winslow D. L., Craig J. C., Kröhn A., Duncan I. B., Mous J. Characterization of human immunodeficiency virus type 1 mutants with decreased sensitivity to proteinase inhibitor Ro 31-8959. Virology. 1995 Jan 10;206(1):527–534. doi: 10.1016/s0042-6822(95)80069-7. [DOI] [PubMed] [Google Scholar]
  10. Kaplan A. H., Michael S. F., Wehbie R. S., Knigge M. F., Paul D. A., Everitt L., Kempf D. J., Norbeck D. W., Erickson J. W., Swanstrom R. Selection of multiple human immunodeficiency virus type 1 variants that encode viral proteases with decreased sensitivity to an inhibitor of the viral protease. Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5597–5601. doi: 10.1073/pnas.91.12.5597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kaplan A. H., Zack J. A., Knigge M., Paul D. A., Kempf D. J., Norbeck D. W., Swanstrom R. Partial inhibition of the human immunodeficiency virus type 1 protease results in aberrant virus assembly and the formation of noninfectious particles. J Virol. 1993 Jul;67(7):4050–4055. doi: 10.1128/jvi.67.7.4050-4055.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kellam P., Larder B. A. Recombinant virus assay: a rapid, phenotypic assay for assessment of drug susceptibility of human immunodeficiency virus type 1 isolates. Antimicrob Agents Chemother. 1994 Jan;38(1):23–30. doi: 10.1128/aac.38.1.23. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Landt O., Grunert H. P., Hahn U. A general method for rapid site-directed mutagenesis using the polymerase chain reaction. Gene. 1990 Nov 30;96(1):125–128. doi: 10.1016/0378-1119(90)90351-q. [DOI] [PubMed] [Google Scholar]
  14. Louis J. M., Nashed N. T., Parris K. D., Kimmel A. R., Jerina D. M. Kinetics and mechanism of autoprocessing of human immunodeficiency virus type 1 protease from an analog of the Gag-Pol polyprotein. Proc Natl Acad Sci U S A. 1994 Aug 16;91(17):7970–7974. doi: 10.1073/pnas.91.17.7970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Makoff A. J., Smallwood A. E. The use of two-cistron constructions in improving the expression of a heterologous gene in E. coli. Nucleic Acids Res. 1990 Apr 11;18(7):1711–1718. doi: 10.1093/nar/18.7.1711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Markowitz M., Mo H., Kempf D. J., Norbeck D. W., Bhat T. N., Erickson J. W., Ho D. D. Selection and analysis of human immunodeficiency virus type 1 variants with increased resistance to ABT-538, a novel protease inhibitor. J Virol. 1995 Feb;69(2):701–706. doi: 10.1128/jvi.69.2.701-706.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Meek T. D., Dreyer G. B. HIV-1 protease as a potential target for anti-AIDS therapy. Ann N Y Acad Sci. 1990;616:41–53. doi: 10.1111/j.1749-6632.1990.tb17826.x. [DOI] [PubMed] [Google Scholar]
  18. Otto M. J., Garber S., Winslow D. L., Reid C. D., Aldrich P., Jadhav P. K., Patterson C. E., Hodge C. N., Cheng Y. S. In vitro isolation and identification of human immunodeficiency virus (HIV) variants with reduced sensitivity to C-2 symmetrical inhibitors of HIV type 1 protease. Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7543–7547. doi: 10.1073/pnas.90.16.7543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pauwels R., Balzarini J., Baba M., Snoeck R., Schols D., Herdewijn P., Desmyter J., De Clercq E. Rapid and automated tetrazolium-based colorimetric assay for the detection of anti-HIV compounds. J Virol Methods. 1988 Aug;20(4):309–321. doi: 10.1016/0166-0934(88)90134-6. [DOI] [PubMed] [Google Scholar]
  20. Paxton W., Connor R. I., Landau N. R. Incorporation of Vpr into human immunodeficiency virus type 1 virions: requirement for the p6 region of gag and mutational analysis. J Virol. 1993 Dec;67(12):7229–7237. doi: 10.1128/jvi.67.12.7229-7237.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Robins T., Plattner J. HIV protease inhibitors: their anti-HIV activity and potential role in treatment. J Acquir Immune Defic Syndr. 1993 Feb;6(2):162–170. [PubMed] [Google Scholar]
  22. Siderovski D. P., Matsuyama T., Frigerio E., Chui S., Min X., Erfle H., Sumner-Smith M., Barnett R. W., Mak T. W. Random mutagenesis of the human immunodeficiency virus type-1 trans-activator of transcription (HIV-1 Tat). Nucleic Acids Res. 1992 Oct 25;20(20):5311–5320. doi: 10.1093/nar/20.20.5311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Stoller T. J., Lim J. J., Woltizky B. A., Graves M. C. Monoclonal and polyclonal antibodies: reagents for studying HIV-1 proteinase variants. Adv Exp Med Biol. 1991;306:507–510. doi: 10.1007/978-1-4684-6012-4_66. [DOI] [PubMed] [Google Scholar]
  24. Tisdale M., Kemp S. D., Parry N. R., Larder B. A. Rapid in vitro selection of human immunodeficiency virus type 1 resistant to 3'-thiacytidine inhibitors due to a mutation in the YMDD region of reverse transcriptase. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5653–5656. doi: 10.1073/pnas.90.12.5653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Tisdale M., Myers R. E., Maschera B., Parry N. R., Oliver N. M., Blair E. D. Cross-resistance analysis of human immunodeficiency virus type 1 variants individually selected for resistance to five different protease inhibitors. Antimicrob Agents Chemother. 1995 Aug;39(8):1704–1710. doi: 10.1128/aac.39.8.1704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Toth M. V., Marshall G. R. A simple, continuous fluorometric assay for HIV protease. Int J Pept Protein Res. 1990 Dec;36(6):544–550. doi: 10.1111/j.1399-3011.1990.tb00994.x. [DOI] [PubMed] [Google Scholar]
  27. Wlodawer A., Erickson J. W. Structure-based inhibitors of HIV-1 protease. Annu Rev Biochem. 1993;62:543–585. doi: 10.1146/annurev.bi.62.070193.002551. [DOI] [PubMed] [Google Scholar]
  28. el-Farrash M. A., Kuroda M. J., Kitazaki T., Masuda T., Kato K., Hatanaka M., Harada S. Generation and characterization of a human immunodeficiency virus type 1 (HIV-1) mutant resistant to an HIV-1 protease inhibitor. J Virol. 1994 Jan;68(1):233–239. doi: 10.1128/jvi.68.1.233-239.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES