Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1995 Sep;69(9):5659–5665. doi: 10.1128/jvi.69.9.5659-5665.1995

Highly purified quiescent human peripheral blood CD4+ T cells are infectible by human immunodeficiency virus but do not release virus after activation.

S Tang 1, B Patterson 1, J A Levy 1
PMCID: PMC189423  PMID: 7637012

Abstract

Previous studies have suggested that resting CD4+ lymphocytes can be infected by human immunodeficiency virus (HIV), but viral production is inhibited. If these cells are activated, progeny virions are released. The present data indicate that CD4+ lymphocytes in the G0/G1 stage of the cell cycle which have been highly purified to remove macrophages and activated HLA-DR+ cells can also be infected by HIV. However, our findings differ from those of earlier reports since in this study, infected quiescent CD4+ cells cannot be activated to produce virus after virus inoculation. PCR analyses indicate that reverse transcription in these CD4+ cells is arrested at a very early step in proviral DNA formation (U3-R region). They do not show any evidence of longer DNA transcripts (e.g., U3-gag). When these quiescent infected CD4+ lymphocytes are activated by exposure to mitogens and macrophages and then reinoculated with HIV, the replication of virus takes place. Resting CD4+ lymphocytes are also resistant to infection when they are cocultured with HIV-infected macrophages. Only activated CD4+ cells are susceptible to cell-to-cell transmission. These observations suggest that in vivo tissue macrophages, susceptible to HIV replication, are the major cells initially productively infected by the virus. Then these cells can transfer HIV to activated CD4+ lymphocytes with resultant virus production. The presence of arrested reverse transcription in quiescent cells raises questions about the cellular factors required to permit production of longer HIV proviral DNA copies. Because they can be reinfected once they have been activated, these infected quiescent cells could be a source of recombinant viruses in the host.

Full Text

The Full Text of this article is available as a PDF (321.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bukrinsky M. I., Sharova N., McDonald T. L., Pushkarskaya T., Tarpley W. G., Stevenson M. Association of integrase, matrix, and reverse transcriptase antigens of human immunodeficiency virus type 1 with viral nucleic acids following acute infection. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):6125–6129. doi: 10.1073/pnas.90.13.6125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Folks T. M., Powell D., Lightfoote M., Koenig S., Fauci A. S., Benn S., Rabson A., Daugherty D., Gendelman H. E., Hoggan M. D. Biological and biochemical characterization of a cloned Leu-3- cell surviving infection with the acquired immune deficiency syndrome retrovirus. J Exp Med. 1986 Jul 1;164(1):280–290. doi: 10.1084/jem.164.1.280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Geppert T. D., Davis L. S., Gur H., Wacholtz M. C., Lipsky P. E. Accessory cell signals involved in T-cell activation. Immunol Rev. 1990 Oct;117:5–66. doi: 10.1111/j.1600-065x.1990.tb00566.x. [DOI] [PubMed] [Google Scholar]
  4. Gowda S. D., Stein B. S., Mohagheghpour N., Benike C. J., Engleman E. G. Evidence that T cell activation is required for HIV-1 entry in CD4+ lymphocytes. J Immunol. 1989 Feb 1;142(3):773–780. [PubMed] [Google Scholar]
  5. Habu S., Raff M. C. Accessory cell dependence of lectin-induced proliferation of mouse T lymphocytes. Eur J Immunol. 1977 Jul;7(7):451–457. doi: 10.1002/eji.1830070710. [DOI] [PubMed] [Google Scholar]
  6. Hoffman A. D., Banapour B., Levy J. A. Characterization of the AIDS-associated retrovirus reverse transcriptase and optimal conditions for its detection in virions. Virology. 1985 Dec;147(2):326–335. doi: 10.1016/0042-6822(85)90135-7. [DOI] [PubMed] [Google Scholar]
  7. Homsy J., Meyer M., Tateno M., Clarkson S., Levy J. A. The Fc and not CD4 receptor mediates antibody enhancement of HIV infection in human cells. Science. 1989 Jun 16;244(4910):1357–1360. doi: 10.1126/science.2786647. [DOI] [PubMed] [Google Scholar]
  8. Kaminsky L. S., McHugh T., Stites D., Volberding P., Henle G., Henle W., Levy J. A. High prevalence of antibodies to acquired immune deficiency syndrome (AIDS)-associated retrovirus (ARV) in AIDS and related conditions but not in other disease states. Proc Natl Acad Sci U S A. 1985 Aug;82(16):5535–5539. doi: 10.1073/pnas.82.16.5535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Krishan A. Rapid flow cytofluorometric analysis of mammalian cell cycle by propidium iodide staining. J Cell Biol. 1975 Jul;66(1):188–193. doi: 10.1083/jcb.66.1.188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Levy J. A., Hoffman A. D., Kramer S. M., Landis J. A., Shimabukuro J. M., Oshiro L. S. Isolation of lymphocytopathic retroviruses from San Francisco patients with AIDS. Science. 1984 Aug 24;225(4664):840–842. doi: 10.1126/science.6206563. [DOI] [PubMed] [Google Scholar]
  11. Levy J. A. Pathogenesis of human immunodeficiency virus infection. Microbiol Rev. 1993 Mar;57(1):183–289. doi: 10.1128/mr.57.1.183-289.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Levy J. A., Rowe W. P. Lack of requirement of murine leukemia virus for early steps in infection of mouse embryo cells by murine sarcoma virus. Virology. 1971 Sep;45(3):844–847. doi: 10.1016/0042-6822(71)90211-x. [DOI] [PubMed] [Google Scholar]
  13. Levy J. A., Shimabukuro J. Recovery of AIDS-associated retroviruses from patients with AIDS or AIDS-related conditions and from clinically healthy individuals. J Infect Dis. 1985 Oct;152(4):734–738. doi: 10.1093/infdis/152.4.734. [DOI] [PubMed] [Google Scholar]
  14. Levy J. A., Tobler L. H., McHugh T. M., Casavant C. H., Stites D. P. Long-term cultivation of T-cell subsets from patients with acquired immune deficiency syndrome. Clin Immunol Immunopathol. 1985 Jun;35(3):328–336. doi: 10.1016/0090-1229(85)90093-5. [DOI] [PubMed] [Google Scholar]
  15. Lori F., di Marzo Veronese F., de Vico A. L., Lusso P., Reitz M. S., Jr, Gallo R. C. Viral DNA carried by human immunodeficiency virus type 1 virions. J Virol. 1992 Aug;66(8):5067–5074. doi: 10.1128/jvi.66.8.5067-5074.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mackewicz C. E., Ortega H. W., Levy J. A. CD8+ cell anti-HIV activity correlates with the clinical state of the infected individual. J Clin Invest. 1991 Apr;87(4):1462–1466. doi: 10.1172/JCI115153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Stevenson M., Stanwick T. L., Dempsey M. P., Lamonica C. A. HIV-1 replication is controlled at the level of T cell activation and proviral integration. EMBO J. 1990 May;9(5):1551–1560. doi: 10.1002/j.1460-2075.1990.tb08274.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Tang S. B., Levy J. A. Inactivation of HIV-1 by trypsin and its use in demonstrating specific virus infection of cells. J Virol Methods. 1991 Jun;33(1-2):39–46. doi: 10.1016/0166-0934(91)90005-k. [DOI] [PubMed] [Google Scholar]
  19. Tateno M., Levy J. A. MT-4 plaque formation can distinguish cytopathic subtypes of the human immunodeficiency virus (HIV). Virology. 1988 Nov;167(1):299–301. doi: 10.1016/0042-6822(88)90084-0. [DOI] [PubMed] [Google Scholar]
  20. Thiele D. L., Kurosaka M., Lipsky P. E. Phenotype of the accessory cell necessary for mitogen-stimulated T and B cell responses in human peripheral blood: delineation by its sensitivity to the lysosomotropic agent, L-leucine methyl ester. J Immunol. 1983 Nov;131(5):2282–2290. [PubMed] [Google Scholar]
  21. Trono D. Partial reverse transcripts in virions from human immunodeficiency and murine leukemia viruses. J Virol. 1992 Aug;66(8):4893–4900. doi: 10.1128/jvi.66.8.4893-4900.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Vuillier F., Scott-Algara D., Dighiero G. Extensive analysis of lymphocyte subsets in normal subjects by three-color immunofluorescence. Nouv Rev Fr Hematol. 1991;33(1):31–38. [PubMed] [Google Scholar]
  23. Walker C. M., Moody D. J., Stites D. P., Levy J. A. CD8+ lymphocytes can control HIV infection in vitro by suppressing virus replication. Science. 1986 Dec 19;234(4783):1563–1566. doi: 10.1126/science.2431484. [DOI] [PubMed] [Google Scholar]
  24. Zack J. A., Arrigo S. J., Weitsman S. R., Go A. S., Haislip A., Chen I. S. HIV-1 entry into quiescent primary lymphocytes: molecular analysis reveals a labile, latent viral structure. Cell. 1990 Apr 20;61(2):213–222. doi: 10.1016/0092-8674(90)90802-l. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES