Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1995 Oct;69(10):6047–6053. doi: 10.1128/jvi.69.10.6047-6053.1995

Human cytomegalovirus neutralizing antibody-resistant phenotype is associated with reduced expression of glycoprotein H.

L Li 1, K L Coelingh 1, W J Britt 1
PMCID: PMC189501  PMID: 7666509

Abstract

We have characterized a neutralizing antibody-resistant mutant human cytomegalovirus (HCMV) obtained from a patient treated with a human monoclonal antiglycoprotein H (gH; unique long region 75) antibody. This virus exhibited resistance to several different neutralizing anti-gH murine monoclonal antibodies (MAbs), as well as to a polyvalent anti-gH serum. The resistant phenotype was unstable and could be maintained only by passage of plaque-purified virus under neutralizing MAb selection. In the absence of a MAb, the resistant phenotype reverted to a neutralizing antibody-sensitive phenotype within one passage. The predicted amino acid sequences of gH from the MAb-resistant and -susceptible parent viruses were identical. Biochemical analysis of the MAb-resistant and -susceptible parent viruses revealed a marked decrease of gH expression in the envelope of the MAb-resistant virus. Furthermore, propagation of the virus in various MAb concentrations resulted in the production of extracellular virions with various levels of resistance to the neutralizing activity of the MAb. These results suggest a mechanism for the generation of neutralizing antibody-resistant viruses which could evade host-derived antiviral antibody responses. In addition, our findings indicate that the stoichiometry of gH in the envelope of infectious HCMV virions is not rigidly fixed and therefore offer a simple explanation for production of phenotypic variants of HCMV through an assembly process in which the content of gH in the envelope of progeny virions varies randomly.

Full Text

The Full Text of this article is available as a PDF (352.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andreoni M., Faircloth M., Vugler L., Britt W. J. A rapid microneutralization assay for the measurement of neutralizing antibody reactive with human cytomegalovirus. J Virol Methods. 1989 Feb;23(2):157–167. doi: 10.1016/0166-0934(89)90129-8. [DOI] [PubMed] [Google Scholar]
  2. Baboonian C., Blake K., Booth J. C., Wiblin C. N. Complement-independent neutralising monoclonal antibody with differential reactivity for strains of human cytomegalovirus. J Med Virol. 1989 Oct;29(2):139–145. doi: 10.1002/jmv.1890290212. [DOI] [PubMed] [Google Scholar]
  3. Baines J. D., Roizman B. The open reading frames UL3, UL4, UL10, and UL16 are dispensable for the replication of herpes simplex virus 1 in cell culture. J Virol. 1991 Feb;65(2):938–944. doi: 10.1128/jvi.65.2.938-944.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bogner E., Reschke M., Reis B., Reis E., Britt W., Radsak K. Recognition of compartmentalized intracellular analogs of glycoprotein H of human cytomegalovirus. Arch Virol. 1992;126(1-4):67–80. doi: 10.1007/BF01309685. [DOI] [PubMed] [Google Scholar]
  5. Britt W. J., Auger D. Synthesis and processing of the envelope gp55-116 complex of human cytomegalovirus. J Virol. 1986 Apr;58(1):185–191. doi: 10.1128/jvi.58.1.185-191.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Britt W. J., Chesebro B., Portis J. L. Identification of a unique erythroleukemia-associated retroviral gp70 expressed during early stages of normal erythroid differentiation. J Exp Med. 1984 Jun 1;159(6):1591–1603. doi: 10.1084/jem.159.6.1591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Britt W. J. Neutralizing antibodies detect a disulfide-linked glycoprotein complex within the envelope of human cytomegalovirus. Virology. 1984 Jun;135(2):369–378. doi: 10.1016/0042-6822(84)90193-4. [DOI] [PubMed] [Google Scholar]
  8. Britt W. J. Recent advances in the identification of significant human cytomegalovirus-encoded proteins. Transplant Proc. 1991 Jun;23(3 Suppl 3):64-9, discussion 69. [PubMed] [Google Scholar]
  9. Britt W. J., Vugler L., Butfiloski E. J., Stephens E. B. Cell surface expression of human cytomegalovirus (HCMV) gp55-116 (gB): use of HCMV-recombinant vaccinia virus-infected cells in analysis of the human neutralizing antibody response. J Virol. 1990 Mar;64(3):1079–1085. doi: 10.1128/jvi.64.3.1079-1085.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Britt W. J., Vugler L., Stephens E. B. Induction of complement-dependent and -independent neutralizing antibodies by recombinant-derived human cytomegalovirus gp55-116 (gB). J Virol. 1988 Sep;62(9):3309–3318. doi: 10.1128/jvi.62.9.3309-3318.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Brunetti C. R., Burke R. L., Kornfeld S., Gregory W., Masiarz F. R., Dingwell K. S., Johnson D. C. Herpes simplex virus glycoprotein D acquires mannose 6-phosphate residues and binds to mannose 6-phosphate receptors. J Biol Chem. 1994 Jun 24;269(25):17067–17074. [PubMed] [Google Scholar]
  12. Cai W. H., Gu B., Person S. Role of glycoprotein B of herpes simplex virus type 1 in viral entry and cell fusion. J Virol. 1988 Aug;62(8):2596–2604. doi: 10.1128/jvi.62.8.2596-2604.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Chesebro B., Wehrly K., Doig D., Nishio J. Antibody-induced modulation of Friend virus cell surface antigens decreases virus production by persistent erythroleukemia cells: influence of the Rfv-3 gene. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5784–5788. doi: 10.1073/pnas.76.11.5784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Cranage M. P., Smith G. L., Bell S. E., Hart H., Brown C., Bankier A. T., Tomlinson P., Barrell B. G., Minson T. C. Identification and expression of a human cytomegalovirus glycoprotein with homology to the Epstein-Barr virus BXLF2 product, varicella-zoster virus gpIII, and herpes simplex virus type 1 glycoprotein H. J Virol. 1988 Apr;62(4):1416–1422. doi: 10.1128/jvi.62.4.1416-1422.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Dingwell K. S., Brunetti C. R., Hendricks R. L., Tang Q., Tang M., Rainbow A. J., Johnson D. C. Herpes simplex virus glycoproteins E and I facilitate cell-to-cell spread in vivo and across junctions of cultured cells. J Virol. 1994 Feb;68(2):834–845. doi: 10.1128/jvi.68.2.834-845.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Drew W. L. Cytomegalovirus infection in patients with AIDS. J Infect Dis. 1988 Aug;158(2):449–456. doi: 10.1093/infdis/158.2.449. [DOI] [PubMed] [Google Scholar]
  17. Forrester A., Farrell H., Wilkinson G., Kaye J., Davis-Poynter N., Minson T. Construction and properties of a mutant of herpes simplex virus type 1 with glycoprotein H coding sequences deleted. J Virol. 1992 Jan;66(1):341–348. doi: 10.1128/jvi.66.1.341-348.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Fowler K. B., Stagno S., Pass R. F., Britt W. J., Boll T. J., Alford C. A. The outcome of congenital cytomegalovirus infection in relation to maternal antibody status. N Engl J Med. 1992 Mar 5;326(10):663–667. doi: 10.1056/NEJM199203053261003. [DOI] [PubMed] [Google Scholar]
  19. Fujinami R. S., Oldstone M. B. Antiviral antibody reacting on the plasma membrane alters measles virus expression inside the cell. Nature. 1979 Jun 7;279(5713):529–530. doi: 10.1038/279529a0. [DOI] [PubMed] [Google Scholar]
  20. Fuller A. O., Santos R. E., Spear P. G. Neutralizing antibodies specific for glycoprotein H of herpes simplex virus permit viral attachment to cells but prevent penetration. J Virol. 1989 Aug;63(8):3435–3443. doi: 10.1128/jvi.63.8.3435-3443.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hanshaw J. B. Congenital cytomegalovirus infection: a fifteen year perspective. J Infect Dis. 1971 May;123(5):555–561. doi: 10.1093/infdis/123.5.555. [DOI] [PubMed] [Google Scholar]
  22. Herold B. C., WuDunn D., Soltys N., Spear P. G. Glycoprotein C of herpes simplex virus type 1 plays a principal role in the adsorption of virus to cells and in infectivity. J Virol. 1991 Mar;65(3):1090–1098. doi: 10.1128/jvi.65.3.1090-1098.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Jacobson M. A., Mills J. Serious cytomegalovirus disease in the acquired immunodeficiency syndrome (AIDS). Clinical findings, diagnosis, and treatment. Ann Intern Med. 1988 Apr;108(4):585–594. doi: 10.7326/0003-4819-108-4-585. [DOI] [PubMed] [Google Scholar]
  24. Johnson D. C., Ligas M. W. Herpes simplex viruses lacking glycoprotein D are unable to inhibit virus penetration: quantitative evidence for virus-specific cell surface receptors. J Virol. 1988 Dec;62(12):4605–4612. doi: 10.1128/jvi.62.12.4605-4612.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kaye J. F., Gompels U. A., Minson A. C. Glycoprotein H of human cytomegalovirus (HCMV) forms a stable complex with the HCMV UL115 gene product. J Gen Virol. 1992 Oct;73(Pt 10):2693–2698. doi: 10.1099/0022-1317-73-10-2693. [DOI] [PubMed] [Google Scholar]
  26. Keay S., Baldwin B. Anti-idiotype antibodies that mimic gp86 of human cytomegalovirus inhibit viral fusion but not attachment. J Virol. 1991 Sep;65(9):5124–5128. doi: 10.1128/jvi.65.9.5124-5128.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Meyers J. D., Flournoy N., Thomas E. D. Nonbacterial pneumonia after allogeneic marrow transplantation: a review of ten years' experience. Rev Infect Dis. 1982 Nov-Dec;4(6):1119–1132. doi: 10.1093/clinids/4.6.1119. [DOI] [PubMed] [Google Scholar]
  28. Miller N., Hutt-Fletcher L. M. A monoclonal antibody to glycoprotein gp85 inhibits fusion but not attachment of Epstein-Barr virus. J Virol. 1988 Jul;62(7):2366–2372. doi: 10.1128/jvi.62.7.2366-2372.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Ostberg L. Human monoclonal antibodies in transplantation. Transplant Proc. 1992 Aug;24(4 Suppl 2):26–30. [PubMed] [Google Scholar]
  30. Pachl C., Probert W. S., Hermsen K. M., Masiarz F. R., Rasmussen L., Merigan T. C., Spaete R. R. The human cytomegalovirus strain Towne glycoprotein H gene encodes glycoprotein p86. Virology. 1989 Apr;169(2):418–426. doi: 10.1016/0042-6822(89)90167-0. [DOI] [PubMed] [Google Scholar]
  31. Rasmussen L., Matkin C., Spaete R., Pachl C., Merigan T. C. Antibody response to human cytomegalovirus glycoproteins gB and gH after natural infection in humans. J Infect Dis. 1991 Nov;164(5):835–842. doi: 10.1093/infdis/164.5.835. [DOI] [PubMed] [Google Scholar]
  32. Rodriguez J. E., Moninger T., Grose C. Entry and egress of varicella virus blocked by same anti-gH monoclonal antibody. Virology. 1993 Oct;196(2):840–844. doi: 10.1006/viro.1993.1543. [DOI] [PubMed] [Google Scholar]
  33. Roop C., Hutchinson L., Johnson D. C. A mutant herpes simplex virus type 1 unable to express glycoprotein L cannot enter cells, and its particles lack glycoprotein H. J Virol. 1993 Apr;67(4):2285–2297. doi: 10.1128/jvi.67.4.2285-2297.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sadzot-Delvaux C., Marc P., Lebon L., Merville-Louis M. P., Piette J., Rentier B. Antibodies to varicella-zoster virus modulate antigen distribution but fail to induce viral persistence in vitro. J Virol. 1992 Dec;66(12):7499–7504. doi: 10.1128/jvi.66.12.7499-7504.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sears A. E., McGwire B. S., Roizman B. Infection of polarized MDCK cells with herpes simplex virus 1: two asymmetrically distributed cell receptors interact with different viral proteins. Proc Natl Acad Sci U S A. 1991 Jun 15;88(12):5087–5091. doi: 10.1073/pnas.88.12.5087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Simpson J. A., Chow J. C., Baker J., Avdalovic N., Yuan S., Au D., Co M. S., Vasquez M., Britt W. J., Coelingh K. L. Neutralizing monoclonal antibodies that distinguish three antigenic sites on human cytomegalovirus glycoprotein H have conformationally distinct binding sites. J Virol. 1993 Jan;67(1):489–496. doi: 10.1128/jvi.67.1.489-496.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sissons J. G. The immunology of cytomegalovirus infection. J R Coll Physicians Lond. 1986 Jan;20(1):40–44. [PMC free article] [PubMed] [Google Scholar]
  38. Spaete R. R., Perot K., Scott P. I., Nelson J. A., Stinski M. F., Pachl C. Coexpression of truncated human cytomegalovirus gH with the UL115 gene product or the truncated human fibroblast growth factor receptor results in transport of gH to the cell surface. Virology. 1993 Apr;193(2):853–861. doi: 10.1006/viro.1993.1194. [DOI] [PubMed] [Google Scholar]
  39. Stagno S., Pass R. F., Cloud G., Britt W. J., Henderson R. E., Walton P. D., Veren D. A., Page F., Alford C. A. Primary cytomegalovirus infection in pregnancy. Incidence, transmission to fetus, and clinical outcome. JAMA. 1986 Oct 10;256(14):1904–1908. [PubMed] [Google Scholar]
  40. Stagno S., Pass R. F., Dworsky M. E., Alford C. A. Congenital and perinatal cytomegalovirus infections. Semin Perinatol. 1983 Jan;7(1):31–42. [PubMed] [Google Scholar]
  41. Tanaka A., Moriuchi H., Hirota K., Numazaki Y. Neutralizing antibody response to cytomegalovirus in seropositive pregnant women. J Med Virol. 1991 Jun;34(2):85–88. doi: 10.1002/jmv.1890340203. [DOI] [PubMed] [Google Scholar]
  42. Urban M., Britt W., Mach M. The dominant linear neutralizing antibody-binding site of glycoprotein gp86 of human cytomegalovirus is strain specific. J Virol. 1992 Mar;66(3):1303–1311. doi: 10.1128/jvi.66.3.1303-1311.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Utz U., Britt W., Vugler L., Mach M. Identification of a neutralizing epitope on glycoprotein gp58 of human cytomegalovirus. J Virol. 1989 May;63(5):1995–2001. doi: 10.1128/jvi.63.5.1995-2001.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Winston D. J., Ho W. G., Lin C. H., Bartoni K., Budinger M. D., Gale R. P., Champlin R. E. Intravenous immune globulin for prevention of cytomegalovirus infection and interstitial pneumonia after bone marrow transplantation. Ann Intern Med. 1987 Jan;106(1):12–18. doi: 10.7326/0003-4819-106-1-12. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES