Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1995 Oct;69(10):6352–6358. doi: 10.1128/jvi.69.10.6352-6358.1995

Adenosine N1-oxide inhibits vaccinia virus replication by blocking translation of viral early mRNAs.

E M Kane 1, S Shuman 1
PMCID: PMC189534  PMID: 7666536

Abstract

Adenosine N1-oxide (ANO) is a potent and highly selective inhibitor of vaccinia virus replication. We examined the impact of ANO on vaccinia virus macromolecular synthesis during synchronous infection of BSC40 cells. Viral DNA replication and viral late protein synthesis were blocked completely by ANO, effects that were attributable to a defect in the expression of viral early genes. Vaccinia virus early proteins were not synthesized in the presence of ANO, even though vaccinia virus early mRNAs were produced. Cellular protein synthesis was unaffected by ANO, and virus infection in the presence of the drug did not elicit the normal shutoff of host protein synthesis. Adenosine N1-oxide triphosphate (ANO-TP), the predominant metabolite of the drug in vivo, could substitute for ATP in RNA synthesis by purified vaccinia virus RNA polymerase. ANO-TP could support early transcription by purified virions if dATP was provided as an energy source. ANO-TP did not inhibit early transcription in the presence of ATP. These findings suggest a novel antiviral mechanism whereby incorporation of a modified nucleotide into viral mRNAs might selectively block viral gene expression at the level of translation. We believe that ANO merits consideration as an antipoxvirus drug for topical treatment of molluscum contagiosum in humans.

Full Text

The Full Text of this article is available as a PDF (289.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BROWN G. B., CLARKE D. A., BIESELE J. J., KAPLAN L., STEVENS M. A. Purine N-oxides. III. Some biological activities of adenine 1-N-oxide derivatives. J Biol Chem. 1958 Dec;233(6):1509–1512. [PubMed] [Google Scholar]
  2. Baldick C. J., Jr, Moss B. Resistance of vaccinia virus to rifampicin conferred by a single nucleotide substitution near the predicted NH2 terminus of a gene encoding an Mr 62,000 polypeptide. Virology. 1987 Jan;156(1):138–145. doi: 10.1016/0042-6822(87)90444-2. [DOI] [PubMed] [Google Scholar]
  3. Baroudy B. M., Moss B. Purification and characterization of a DNA-dependent RNA polymerase from vaccinia virions. J Biol Chem. 1980 May 10;255(9):4372–4380. [PubMed] [Google Scholar]
  4. Bennett L. L., Jr, Schnebli H. P., Vail M. H., Allan P. W., Montgomery J. A. Purine ribonucleoside kinase activity and resistance to some analogs of adenosine. Mol Pharmacol. 1966 Sep;2(5):432–443. [PubMed] [Google Scholar]
  5. Borchardt R. T., Keller B. T., Patel-Thombre U. Neplanocin A. A potent inhibitor of S-adenosylhomocysteine hydrolase and of vaccinia virus multiplication in mouse L929 cells. J Biol Chem. 1984 Apr 10;259(7):4353–4358. [PubMed] [Google Scholar]
  6. Condit R. C., Easterly R., Pacha R. F., Fathi Z., Meis R. J. A vaccinia virus isatin-beta-thiosemicarbazone resistance mutation maps in the viral gene encoding the 132-kDa subunit of RNA polymerase. Virology. 1991 Dec;185(2):857–861. doi: 10.1016/0042-6822(91)90559-t. [DOI] [PubMed] [Google Scholar]
  7. Condit R. C., Niles E. G. Orthopoxvirus genetics. Curr Top Microbiol Immunol. 1990;163:1–39. doi: 10.1007/978-3-642-75605-4_1. [DOI] [PubMed] [Google Scholar]
  8. De Clercq E., Bergstrom D. E., Holy A., Montgomery J. A. Broad-spectrum antiviral activity of adenosine analogues. Antiviral Res. 1984 Jun;4(3):119–133. doi: 10.1016/0166-3542(84)90012-3. [DOI] [PubMed] [Google Scholar]
  9. Dyster L. M., Niles E. G. Genetic and biochemical characterization of vaccinia virus genes D2L and D3R which encode virion structural proteins. Virology. 1991 Jun;182(2):455–467. doi: 10.1016/0042-6822(91)90586-z. [DOI] [PubMed] [Google Scholar]
  10. Frederiksen S., Jorgensen A. O., Rasmussen A. H., Tonnesen T. The effect of adenosine N1-oxide on the incorporation of radioactive precursors into the nucleic acids. Mol Pharmacol. 1968 Jul;4(4):358–366. [PubMed] [Google Scholar]
  11. Gershowitz A., Boone R. F., Moss B. Multiple roles for ATP in the synthesis and processing of mRNA by vaccinia virus: specific inhibitory effects of adenosine (beta,gamma-imido) triphosphate. J Virol. 1978 Aug;27(2):399–408. doi: 10.1128/jvi.27.2.399-408.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Golini F., Kates J. R. A soluble transcription system derived from purified vaccinia virions. J Virol. 1985 Jan;53(1):205–213. doi: 10.1128/jvi.53.1.205-213.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Guranowski A., Montgomery J. A., Cantoni G. L., Chiang P. K. Adenosine analogues as substrates and inhibitors of S-adenosylhomocysteine hydrolase. Biochemistry. 1981 Jan 6;20(1):110–115. doi: 10.1021/bi00504a019. [DOI] [PubMed] [Google Scholar]
  14. Hagler J., Luo Y., Shuman S. Factor-dependent transcription termination by vaccinia RNA polymerase. Kinetic coupling and requirement for ATP hydrolysis. J Biol Chem. 1994 Apr 1;269(13):10050–10060. [PubMed] [Google Scholar]
  15. Johnson G. P., Goebel S. J., Paoletti E. An update on the vaccinia virus genome. Virology. 1993 Oct;196(2):381–401. doi: 10.1006/viro.1993.1494. [DOI] [PubMed] [Google Scholar]
  16. Keller B. T., Borchardt R. T. Adenosine dialdehyde: a potent inhibitor of vaccinia virus multiplication in mouse L929 cells. Mol Pharmacol. 1987 May;31(5):485–492. [PubMed] [Google Scholar]
  17. Lee-Chen G. J., Niles E. G. Transcription and translation mapping of the 13 genes in the vaccinia virus HindIII D fragment. Virology. 1988 Mar;163(1):52–63. doi: 10.1016/0042-6822(88)90233-4. [DOI] [PubMed] [Google Scholar]
  18. Li J., Broyles S. S. The DNA-dependent ATPase activity of vaccinia virus early gene transcription factor is essential for its transcription activation function. J Biol Chem. 1993 Sep 25;268(27):20016–20021. [PubMed] [Google Scholar]
  19. Liu S., Wolfe M. S., Borchardt R. T. Rational approaches to the design of antiviral agents based on S-adenosyl-L-homocysteine hydrolase as a molecular target. Antiviral Res. 1992 Sep;19(3):247–265. doi: 10.1016/0166-3542(92)90083-h. [DOI] [PubMed] [Google Scholar]
  20. Meis R. J., Condit R. C. Genetic and molecular biological characterization of a vaccinia virus gene which renders the virus dependent on isatin-beta-thiosemicarbazone (IBT). Virology. 1991 Jun;182(2):442–454. doi: 10.1016/0042-6822(91)90585-y. [DOI] [PubMed] [Google Scholar]
  21. Montgomery J. A. Approaches to antiviral chemotherapy. Antiviral Res. 1989 Oct;12(3):113–131. doi: 10.1016/0166-3542(89)90046-6. [DOI] [PubMed] [Google Scholar]
  22. Moss B., Ahn B. Y., Amegadzie B., Gershon P. D., Keck J. G. Cytoplasmic transcription system encoded by vaccinia virus. J Biol Chem. 1991 Jan 25;266(3):1355–1358. [PubMed] [Google Scholar]
  23. Muthukrishnan S., Moss B., Cooper J. A., Maxwell E. S. Influence of 5'-terminal cap structure on the initiation of translation of vaccinia virus mRNA. J Biol Chem. 1978 Mar 10;253(5):1710–1715. [PubMed] [Google Scholar]
  24. Niles E. G., Condit R. C., Caro P., Davidson K., Matusick L., Seto J. Nucleotide sequence and genetic map of the 16-kb vaccinia virus HindIII D fragment. Virology. 1986 Aug;153(1):96–112. doi: 10.1016/0042-6822(86)90011-5. [DOI] [PubMed] [Google Scholar]
  25. Niles E. G., Lee-Chen G. J., Shuman S., Moss B., Broyles S. S. Vaccinia virus gene D12L encodes the small subunit of the viral mRNA capping enzyme. Virology. 1989 Oct;172(2):513–522. doi: 10.1016/0042-6822(89)90194-3. [DOI] [PubMed] [Google Scholar]
  26. Paoletti E., Lipinskas B. R. The role of ATP in the biogenesis of vaccinia virus mRNA in vitro. Virology. 1978 Jun 15;87(2):317–325. doi: 10.1016/0042-6822(78)90137-x. [DOI] [PubMed] [Google Scholar]
  27. Payne L. G., Kristenson K. Mechanism of vaccinia virus release and its specific inhibition by N1-isonicotinoyl-N2-3-methyl-4-chlorobenzoylhydrazine. J Virol. 1979 Nov;32(2):614–622. doi: 10.1128/jvi.32.2.614-622.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Raczynski P., Condit R. C. Specific inhibition of vaccinia virus growth by 2'-O-methyladenosine: isolation of a drug-resistant virus mutant. Virology. 1983 Jul 30;128(2):458–462. doi: 10.1016/0042-6822(83)90270-2. [DOI] [PubMed] [Google Scholar]
  29. Rempel R. E., Anderson M. K., Evans E., Traktman P. Temperature-sensitive vaccinia virus mutants identify a gene with an essential role in viral replication. J Virol. 1990 Feb;64(2):574–583. doi: 10.1128/jvi.64.2.574-583.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Schmutz C., Payne L. G., Gubser J., Wittek R. A mutation in the gene encoding the vaccinia virus 37,000-M(r) protein confers resistance to an inhibitor of virus envelopment and release. J Virol. 1991 Jul;65(7):3435–3442. doi: 10.1128/jvi.65.7.3435-3442.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Schnebli H. P., Hill D. L., Bennett L. L., Jr Purification and properties of adenosine kinase from human tumor cells of type H. Ep. No. 2. J Biol Chem. 1967 May 10;242(9):1997–2004. [PubMed] [Google Scholar]
  32. Schwartz J. J., Myskowski P. L. Molluscum contagiosum in patients with human immunodeficiency virus infection. A review of twenty-seven patients. J Am Acad Dermatol. 1992 Oct;27(4):583–588. doi: 10.1016/0190-9622(92)70226-6. [DOI] [PubMed] [Google Scholar]
  33. Shannon W. M., Shortnacy A., Arnett G., Montgomery J. A. Antiviral agents. 1-Aralkyloxyadenosines. J Med Chem. 1974 Mar;17(3):361–363. doi: 10.1021/jm00249a025. [DOI] [PubMed] [Google Scholar]
  34. Shuman S., Broyles S. S., Moss B. Purification and characterization of a transcription termination factor from vaccinia virions. J Biol Chem. 1987 Sep 5;262(25):12372–12380. [PubMed] [Google Scholar]
  35. Shuman S., Spencer E., Furneaux H., Hurwitz J. The role of ATP in in vitro vaccinia virus RNA synthesis effects of AMP-PNP and ATP gamma S. J Biol Chem. 1980 Jun 10;255(11):5396–5403. [PubMed] [Google Scholar]
  36. Spencer E., Shuman S., Hurwitz J. Purification and properties of vaccinia virus DNA-dependent RNA polymerase. J Biol Chem. 1980 Jun 10;255(11):5388–5395. [PubMed] [Google Scholar]
  37. Tartaglia J., Piccini A., Paoletti E. Vaccinia virus rifampicin-resistance locus specifies a late 63,000 Da gene product. Virology. 1986 Apr 15;150(1):45–54. doi: 10.1016/0042-6822(86)90264-3. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES