Abstract
Human immunodeficiency virus (HIV) reverse transcriptase substitutes for temperature-sensitive DNA polymerase I (Pol Its) in Escherichia coli, providing a screen for anti-HIV reverse transcriptase nucleoside analogs in bacteria. Since phosphorylation of nucleosides in E. coli is limited to thymidine and its derivatives, we coexpressed herpes simplex virus thymidine kinase, an enzyme that phosphorylates a wide variety of nucleoside analogs, together with HIV reverse transcriptase. Coexpression of herpes simplex virus thymidine kinase and HIV reverse transcriptase rendered Pol Its cells sensitive to dideoxycytidine. Studies with different nucleoside analogs indicate that this bacterial screening system is able to select and identify nucleoside analogs that specifically target HIV reverse transcriptase.
Full Text
The Full Text of this article is available as a PDF (190.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bakhanashvili M., Hizi A. A possible role for cysteine residues in the fidelity of DNA synthesis exhibited by the reverse transcriptases of human immunodeficiency viruses type 1 and type 2. FEBS Lett. 1992 Jun 15;304(2-3):289–293. doi: 10.1016/0014-5793(92)80640-3. [DOI] [PubMed] [Google Scholar]
- Bebenek K., Abbotts J., Roberts J. D., Wilson S. H., Kunkel T. A. Specificity and mechanism of error-prone replication by human immunodeficiency virus-1 reverse transcriptase. J Biol Chem. 1989 Oct 5;264(28):16948–16956. [PubMed] [Google Scholar]
- Black M. E., Loeb L. A. Identification of important residues within the putative nucleoside binding site of HSV-1 thymidine kinase by random sequence selection: analysis of selected mutants in vitro. Biochemistry. 1993 Nov 2;32(43):11618–11626. doi: 10.1021/bi00094a019. [DOI] [PubMed] [Google Scholar]
- Boucher C. A., O'Sullivan E., Mulder J. W., Ramautarsing C., Kellam P., Darby G., Lange J. M., Goudsmit J., Larder B. A. Ordered appearance of zidovudine resistance mutations during treatment of 18 human immunodeficiency virus-positive subjects. J Infect Dis. 1992 Jan;165(1):105–110. doi: 10.1093/infdis/165.1.105. [DOI] [PubMed] [Google Scholar]
- Cheng Y. C. Deoxythymidine kinase induced in the HELA TK- cells by herpes simplex virus type I and type II. Substrate specificity and kinetic behavior. Biochim Biophys Acta. 1976 Dec 8;452(2):370–381. doi: 10.1016/0005-2744(76)90186-8. [DOI] [PubMed] [Google Scholar]
- Dube D. K., Black M. E., Munir K. M., Loeb L. A. Selection of new biologically active molecules from random nucleotide sequences. Gene. 1993 Dec 27;137(1):41–47. doi: 10.1016/0378-1119(93)90249-3. [DOI] [PubMed] [Google Scholar]
- Dube D. K., Parker J. D., French D. C., Cahill D. S., Dube S., Horwitz M. S., Munir K. M., Loeb L. A. Artificial mutants generated by the insertion of random oligonucleotides into the putative nucleoside binding site of the HSV-1 thymidine kinase gene. Biochemistry. 1991 Dec 24;30(51):11760–11767. doi: 10.1021/bi00115a004. [DOI] [PubMed] [Google Scholar]
- Furman P. A., Fyfe J. A., St Clair M. H., Weinhold K., Rideout J. L., Freeman G. A., Lehrman S. N., Bolognesi D. P., Broder S., Mitsuya H. Phosphorylation of 3'-azido-3'-deoxythymidine and selective interaction of the 5'-triphosphate with human immunodeficiency virus reverse transcriptase. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8333–8337. doi: 10.1073/pnas.83.21.8333. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gu Z., Gao Q., Li X., Parniak M. A., Wainberg M. A. Novel mutation in the human immunodeficiency virus type 1 reverse transcriptase gene that encodes cross-resistance to 2',3'-dideoxyinosine and 2',3'-dideoxycytidine. J Virol. 1992 Dec;66(12):7128–7135. doi: 10.1128/jvi.66.12.7128-7135.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kim B., Loeb L. A. Human immunodeficiency virus reverse transcriptase substitutes for DNA polymerase I in Escherichia coli. Proc Natl Acad Sci U S A. 1995 Jan 31;92(3):684–688. doi: 10.1073/pnas.92.3.684. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Larder B. A., Kemp S. D. Multiple mutations in HIV-1 reverse transcriptase confer high-level resistance to zidovudine (AZT). Science. 1989 Dec 1;246(4934):1155–1158. doi: 10.1126/science.2479983. [DOI] [PubMed] [Google Scholar]
- Mitsuya H., Broder S. Inhibition of the in vitro infectivity and cytopathic effect of human T-lymphotrophic virus type III/lymphadenopathy-associated virus (HTLV-III/LAV) by 2',3'-dideoxynucleosides. Proc Natl Acad Sci U S A. 1986 Mar;83(6):1911–1915. doi: 10.1073/pnas.83.6.1911. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Munir K. M., French D. C., Loeb L. A. Thymidine kinase mutants obtained by random sequence selection. Proc Natl Acad Sci U S A. 1993 May 1;90(9):4012–4016. doi: 10.1073/pnas.90.9.4012. [DOI] [PMC free article] [PubMed] [Google Scholar]
- OKAZAKI R., KORNBERG A. DEOXYTHYMIDINE KINASE OF ESCHERICHIA COLI. II. KINETICS AND FEEDBACK CONTROL. J Biol Chem. 1964 Jan;239:275–284. [PubMed] [Google Scholar]
- Perrino F. W., Mekosh H. L. Incorporation of cytosine arabinoside monophosphate into DNA at internucleotide linkages by human DNA polymerase alpha. J Biol Chem. 1992 Nov 15;267(32):23043–23051. [PubMed] [Google Scholar]
- Prasad V. R., Lowy I., de los Santos T., Chiang L., Goff S. P. Isolation and characterization of a dideoxyguanosine triphosphate-resistant mutant of human immunodeficiency virus reverse transcriptase. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11363–11367. doi: 10.1073/pnas.88.24.11363. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Preston B. D., Poiesz B. J., Loeb L. A. Fidelity of HIV-1 reverse transcriptase. Science. 1988 Nov 25;242(4882):1168–1171. doi: 10.1126/science.2460924. [DOI] [PubMed] [Google Scholar]
- Sweasy J. B., Loeb L. A. Detection and characterization of mammalian DNA polymerase beta mutants by functional complementation in Escherichia coli. Proc Natl Acad Sci U S A. 1993 May 15;90(10):4626–4630. doi: 10.1073/pnas.90.10.4626. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takeshita S., Sato M., Toba M., Masahashi W., Hashimoto-Gotoh T. High-copy-number and low-copy-number plasmid vectors for lacZ alpha-complementation and chloramphenicol- or kanamycin-resistance selection. Gene. 1987;61(1):63–74. doi: 10.1016/0378-1119(87)90365-9. [DOI] [PubMed] [Google Scholar]