Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1995 Nov;69(11):6751–6757. doi: 10.1128/jvi.69.11.6751-6757.1995

Characterization of a 100-kilodalton binding protein for the six serotypes of coxsackie B viruses.

U R de Verdugo 1, H C Selinka 1, M Huber 1, B Kramer 1, J Kellermann 1, P H Hofschneider 1, R Kandolf 1
PMCID: PMC189586  PMID: 7474086

Abstract

Viral infection of host cells primarily depends on binding of the virus to a specific cell surface protein. In order to characterize the binding protein for group B coxsackieviruses (CVB), detergent-solubilized membrane proteins of different cell lines were tested in virus overlay protein-binding assays. A prominent virus-binding protein with a molecular mass of 100 kDa was detected in various CVB-permissive human and monkey cell lines but was not detected in nonpermissive cell lines. The specificity of CVB binding to the 100-kDa protein on permissive human cells was substantiated by binding of all six serotypes of CVB and by competition experiments. In contrast, poliovirus and Sendai virus did not bind to the 100-kDa CVB-specific protein. A fraction of HeLa membrane proteins enriched in the range of 100 kDa showed functional activity by transforming infectious CVB (160S) into A-particles (135S). In order to purify this CVB-binding protein, solubilized membrane proteins from HeLa cells were separated by preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by elution of the 100-kDa protein. Amino acid sequence analysis of tryptic fragments of the CVB-binding protein indicated that this 100-kDa CVB-specific protein is a cell surface protein related to nucleolin. These results were confirmed by immunoprecipitations of the CVB-binding protein with nucleolin-specific antibodies, suggesting that a nucleolin-related membrane protein acts as a specific binding protein for the six serotypes of CVB.

Full Text

The Full Text of this article is available as a PDF (374.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abelmann W. H. Viral myocarditis and its sequelae. Annu Rev Med. 1973;24:145–152. doi: 10.1146/annurev.me.24.020173.001045. [DOI] [PubMed] [Google Scholar]
  2. Bergelson J. M., Chan M., Solomon K. R., St John N. F., Lin H., Finberg R. W. Decay-accelerating factor (CD55), a glycosylphosphatidylinositol-anchored complement regulatory protein, is a receptor for several echoviruses. Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):6245–6248. doi: 10.1073/pnas.91.13.6245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bergelson J. M., Mohanty J. G., Crowell R. L., St John N. F., Lublin D. M., Finberg R. W. Coxsackievirus B3 adapted to growth in RD cells binds to decay-accelerating factor (CD55). J Virol. 1995 Mar;69(3):1903–1906. doi: 10.1128/jvi.69.3.1903-1906.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Borer R. A., Lehner C. F., Eppenberger H. M., Nigg E. A. Major nucleolar proteins shuttle between nucleus and cytoplasm. Cell. 1989 Feb 10;56(3):379–390. doi: 10.1016/0092-8674(89)90241-9. [DOI] [PubMed] [Google Scholar]
  5. Bouche G., Caizergues-Ferrer M., Bugler B., Amalric F. Interrelations between the maturation of a 100 kDa nucleolar protein and pre rRNA synthesis in CHO cells. Nucleic Acids Res. 1984 Apr 11;12(7):3025–3035. doi: 10.1093/nar/12.7.3025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bugler B., Caizergues-Ferrer M., Bouche G., Bourbon H., Amalric F. Detection and localization of a class of proteins immunologically related to a 100-kDa nucleolar protein. Eur J Biochem. 1982 Nov 15;128(2-3):475–480. doi: 10.1111/j.1432-1033.1982.tb06989.x. [DOI] [PubMed] [Google Scholar]
  7. Cole S. R., Ashman L. K., Ey P. L. Biotinylation: an alternative to radioiodination for the identification of cell surface antigens in immunoprecipitates. Mol Immunol. 1987 Jul;24(7):699–705. doi: 10.1016/0161-5890(87)90051-4. [DOI] [PubMed] [Google Scholar]
  8. Crowell R. L., Philipson L. Specific alterations of coxsackievirus B3 eluted from HeLa cells. J Virol. 1971 Oct;8(4):509–515. doi: 10.1128/jvi.8.4.509-515.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Defer C., Belin M. T., Caillet-Boudin M. L., Boulanger P. Human adenovirus-host cell interactions: comparative study with members of subgroups B and C. J Virol. 1990 Aug;64(8):3661–3673. doi: 10.1128/jvi.64.8.3661-3673.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Giranda V. L., Chapman M. S., Rossmann M. G. Modeling of the human intercellular adhesion molecule-1, the human rhinovirus major group receptor. Proteins. 1990;7(3):227–233. doi: 10.1002/prot.340070304. [DOI] [PubMed] [Google Scholar]
  11. Greve J. M., Davis G., Meyer A. M., Forte C. P., Yost S. C., Marlor C. W., Kamarck M. E., McClelland A. The major human rhinovirus receptor is ICAM-1. Cell. 1989 Mar 10;56(5):839–847. doi: 10.1016/0092-8674(89)90688-0. [DOI] [PubMed] [Google Scholar]
  12. Greve J. M., Forte C. P., Marlor C. W., Meyer A. M., Hoover-Litty H., Wunderlich D., McClelland A. Mechanisms of receptor-mediated rhinovirus neutralization defined by two soluble forms of ICAM-1. J Virol. 1991 Nov;65(11):6015–6023. doi: 10.1128/jvi.65.11.6015-6023.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Görg A., Postel W., Günther S. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis. 1988 Sep;9(9):531–546. doi: 10.1002/elps.1150090913. [DOI] [PubMed] [Google Scholar]
  14. Hofer F., Gruenberger M., Kowalski H., Machat H., Huettinger M., Kuechler E., Blaas D. Members of the low density lipoprotein receptor family mediate cell entry of a minor-group common cold virus. Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1839–1842. doi: 10.1073/pnas.91.5.1839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Homann H. E., Willenbrink W., Buchholz C. J., Neubert W. J. Sendai virus protein-protein interactions studied by a protein-blotting protein-overlay technique: mapping of domains on NP protein required for binding to P protein. J Virol. 1991 Mar;65(3):1304–1309. doi: 10.1128/jvi.65.3.1304-1309.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Huber S. A. VCAM-1 is a receptor for encephalomyocarditis virus on murine vascular endothelial cells. J Virol. 1994 Jun;68(6):3453–3458. doi: 10.1128/jvi.68.6.3453-3458.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jordan P., Heid H., Kinzel V., Kübler D. Major cell surface-located protein substrates of an ecto-protein kinase are homologs of known nuclear proteins. Biochemistry. 1994 Dec 13;33(49):14696–14706. doi: 10.1021/bi00253a007. [DOI] [PubMed] [Google Scholar]
  18. Kandolf R., Ameis D., Kirschner P., Canu A., Hofschneider P. H. In situ detection of enteroviral genomes in myocardial cells by nucleic acid hybridization: an approach to the diagnosis of viral heart disease. Proc Natl Acad Sci U S A. 1987 Sep;84(17):6272–6276. doi: 10.1073/pnas.84.17.6272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kandolf R., Canu A., Hofschneider P. H. Coxsackie B3 virus can replicate in cultured human foetal heart cells and is inhibited by interferon. J Mol Cell Cardiol. 1985 Feb;17(2):167–181. doi: 10.1016/s0022-2828(85)80019-5. [DOI] [PubMed] [Google Scholar]
  20. Kandolf R., Hofschneider P. H. Molecular cloning of the genome of a cardiotropic Coxsackie B3 virus: full-length reverse-transcribed recombinant cDNA generates infectious virus in mammalian cells. Proc Natl Acad Sci U S A. 1985 Jul;82(14):4818–4822. doi: 10.1073/pnas.82.14.4818. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kandolf R., Hofschneider P. H. Viral heart disease. Springer Semin Immunopathol. 1989;11(1):1–13. doi: 10.1007/BF00197080. [DOI] [PubMed] [Google Scholar]
  22. Kandolf R., Klingel K., Zell R., Selinka H. C., Raab U., Schneider-Brachert W., Bültmann B. Molecular pathogenesis of enterovirus-induced myocarditis: virus persistence and chronic inflammation. Intervirology. 1993;35(1-4):140–151. doi: 10.1159/000150305. [DOI] [PubMed] [Google Scholar]
  23. Kleinman H. K., Weeks B. S., Cannon F. B., Sweeney T. M., Sephel G. C., Clement B., Zain M., Olson M. O., Jucker M., Burrous B. A. Identification of a 110-kDa nonintegrin cell surface laminin-binding protein which recognizes an A chain neurite-promoting peptide. Arch Biochem Biophys. 1991 Nov 1;290(2):320–325. doi: 10.1016/0003-9861(91)90547-v. [DOI] [PubMed] [Google Scholar]
  24. Klingel K., Hohenadl C., Canu A., Albrecht M., Seemann M., Mall G., Kandolf R. Ongoing enterovirus-induced myocarditis is associated with persistent heart muscle infection: quantitative analysis of virus replication, tissue damage, and inflammation. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):314–318. doi: 10.1073/pnas.89.1.314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Koike S., Horie H., Ise I., Okitsu A., Yoshida M., Iizuka N., Takeuchi K., Takegami T., Nomoto A. The poliovirus receptor protein is produced both as membrane-bound and secreted forms. EMBO J. 1990 Oct;9(10):3217–3224. doi: 10.1002/j.1460-2075.1990.tb07520.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Krah D. L. Characterization of octyl glucoside-solubilized cell membrane receptors for binding measles virus. Virology. 1989 Sep;172(1):386–390. doi: 10.1016/0042-6822(89)90147-5. [DOI] [PubMed] [Google Scholar]
  27. Krantz S., Salazar R., Brandt R., Kellermann J., Lottspeich F. Purification and partial amino acid sequencing of a fructosyllysine-specific binding protein from cell membranes of the monocyte-like cell line U937. Biochim Biophys Acta. 1995 Apr 6;1266(1):109–112. doi: 10.1016/0167-4889(95)00028-q. [DOI] [PubMed] [Google Scholar]
  28. Kyhse-Andersen J. Electroblotting of multiple gels: a simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose. J Biochem Biophys Methods. 1984 Dec;10(3-4):203–209. doi: 10.1016/0165-022x(84)90040-x. [DOI] [PubMed] [Google Scholar]
  29. Lee C., Levin A., Branton D. Copper staining: a five-minute protein stain for sodium dodecyl sulfate-polyacrylamide gels. Anal Biochem. 1987 Nov 1;166(2):308–312. doi: 10.1016/0003-2697(87)90579-3. [DOI] [PubMed] [Google Scholar]
  30. Lehner C. F., Eppenberger H. M., Fakan S., Nigg E. A. Nuclear substructure antigens. Monoclonal antibodies against components of nuclear matrix preparations. Exp Cell Res. 1986 Jan;162(1):205–219. doi: 10.1016/0014-4827(86)90439-8. [DOI] [PubMed] [Google Scholar]
  31. Lineberger D. W., Uncapher C. R., Graham D. J., Colonno R. J. Domains 1 and 2 of ICAM-1 are sufficient to bind human rhinoviruses. Virus Res. 1992 Jul;24(2):173–186. doi: 10.1016/0168-1702(92)90005-t. [DOI] [PubMed] [Google Scholar]
  32. Lonberg-Holm K., Crowell R. L., Philipson L. Unrelated animal viruses share receptors. Nature. 1976 Feb 26;259(5545):679–681. doi: 10.1038/259679a0. [DOI] [PubMed] [Google Scholar]
  33. Mapoles J. E., Krah D. L., Crowell R. L. Purification of a HeLa cell receptor protein for group B coxsackieviruses. J Virol. 1985 Sep;55(3):560–566. doi: 10.1128/jvi.55.3.560-566.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Mendelsohn C. L., Wimmer E., Racaniello V. R. Cellular receptor for poliovirus: molecular cloning, nucleotide sequence, and expression of a new member of the immunoglobulin superfamily. Cell. 1989 Mar 10;56(5):855–865. doi: 10.1016/0092-8674(89)90690-9. [DOI] [PubMed] [Google Scholar]
  35. Mischak H., Neubauer C., Berger B., Kuechler E., Blaas D. Detection of the human rhinovirus minor group receptor on renaturing Western blots. J Gen Virol. 1988 Oct;69(Pt 10):2653–2656. doi: 10.1099/0022-1317-69-10-2653. [DOI] [PubMed] [Google Scholar]
  36. Pfeifle J., Anderer F. A. Isolation and characterization of phosphoprotein pp 105 from simian virus 40-transformed mouse fibroblasts. Biochim Biophys Acta. 1983 Feb 16;762(1):86–93. doi: 10.1016/0167-4889(83)90120-9. [DOI] [PubMed] [Google Scholar]
  37. Pfeifle J., Anderer F. A. Localization of phosphoprotein PP 105 in cell lines of various species. Biochem Biophys Res Commun. 1983 Oct 14;116(1):106–112. doi: 10.1016/0006-291x(83)90387-x. [DOI] [PubMed] [Google Scholar]
  38. Pfeifle J., Hagmann W., Anderer F. A. Cell adhesion-dependent differences in endogenous protein phosphorylation on the surface of various cell lines. Biochim Biophys Acta. 1981 Sep 29;670(2):274–284. doi: 10.1016/0005-2795(81)90020-9. [DOI] [PubMed] [Google Scholar]
  39. Roivainen M., Hyypiä T., Piirainen L., Kalkkinen N., Stanway G., Hovi T. RGD-dependent entry of coxsackievirus A9 into host cells and its bypass after cleavage of VP1 protein by intestinal proteases. J Virol. 1991 Sep;65(9):4735–4740. doi: 10.1128/jvi.65.9.4735-4740.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Selinka H. C., Zibert A., Wimmer E. Poliovirus can enter and infect mammalian cells by way of an intercellular adhesion molecule 1 pathway. Proc Natl Acad Sci U S A. 1991 May 1;88(9):3598–3602. doi: 10.1073/pnas.88.9.3598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Semenkovich C. F., Ostlund R. E., Jr, Olson M. O., Yang J. W. A protein partially expressed on the surface of HepG2 cells that binds lipoproteins specifically is nucleolin. Biochemistry. 1990 Oct 16;29(41):9708–9713. doi: 10.1021/bi00493a028. [DOI] [PubMed] [Google Scholar]
  42. Shafren D. R., Bates R. C., Agrez M. V., Herd R. L., Burns G. F., Barry R. D. Coxsackieviruses B1, B3, and B5 use decay accelerating factor as a receptor for cell attachment. J Virol. 1995 Jun;69(6):3873–3877. doi: 10.1128/jvi.69.6.3873-3877.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Srivastava M., Fleming P. J., Pollard H. B., Burns A. L. Cloning and sequencing of the human nucleolin cDNA. FEBS Lett. 1989 Jun 19;250(1):99–105. doi: 10.1016/0014-5793(89)80692-1. [DOI] [PubMed] [Google Scholar]
  44. Srivastava M., McBride O. W., Fleming P. J., Pollard H. B., Burns A. L. Genomic organization and chromosomal localization of the human nucleolin gene. J Biol Chem. 1990 Sep 5;265(25):14922–14931. [PubMed] [Google Scholar]
  45. Ward T., Pipkin P. A., Clarkson N. A., Stone D. M., Minor P. D., Almond J. W. Decay-accelerating factor CD55 is identified as the receptor for echovirus 7 using CELICS, a rapid immuno-focal cloning method. EMBO J. 1994 Nov 1;13(21):5070–5074. doi: 10.1002/j.1460-2075.1994.tb06836.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Xu R., Mohanty J. G., Crowell R. L. Receptor proteins on newborn Balb/c mouse brain cells for coxsackievirus B3 are immunologically distinct from those on HeLa cells. Virus Res. 1995 Mar;35(3):323–340. doi: 10.1016/0168-1702(94)00100-q. [DOI] [PubMed] [Google Scholar]
  47. Zibert A., Selinka H. C., Elroy-Stein O., Wimmer E. The soluble form of two N-terminal domains of the poliovirus receptor is sufficient for blocking viral infection. Virus Res. 1992 Sep 1;25(1-2):51–61. doi: 10.1016/0168-1702(92)90099-u. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES