Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1995 Nov;69(11):6892–6897. doi: 10.1128/jvi.69.11.6892-6897.1995

Characterization of double-stranded RNA satellites associated with the Trichomonas vaginalis virus.

A Khoshnan 1, J F Alderete 1
PMCID: PMC189605  PMID: 7474105

Abstract

Three small and distinct satellite double-stranded RNAs (dsRNAs) denoted s1, s1', and s2 were recently described for a Trichomonas vaginalis isolate harboring a dsRNA virus. Since characterization of these satellite dsRNAs might provide insight into the virus replication cycle and virus-host interactions, full-length cDNAs to s1 and s1' dsRNAs were synthesized and sequenced. s1 dsRNA has 688 bp, and s1' dsRNA has 616 bp. A 228-bp open reading frame that begins at nucleotide 37 was detected on a putative sense strand of s1. All satellite RNAs were found associated with RNA-dependent RNA polymerase (RDRP) activity that banded on CsCl gradients. Within carrier trichomonads, satellite RNAs synthesized single-stranded replicative intermediates. An in vitro assay was established to assess replication of satellite RNAs. Transcripts generated from s1 cDNA, for example, served as a template for the viral RDRP. These templates had a polarity similar to that of the replicative intermediate found in the satellite-harboring parasites. Importantly, the recognition of s1 RNA was shown to be specific, since unrelated RNAs did not serve as templates for RDRP under the same experimental conditions. The data indicate that the cDNA of s1 has a specific and essential sequence needed for recognition by the viral RDRP and for subsequent RNA synthesis. Both s1 and s1' have conserved domains, albeit of unproven function, but which may be required for replication.

Full Text

The Full Text of this article is available as a PDF (418.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chen D., Zeng C. Q., Wentz M. J., Gorziglia M., Estes M. K., Ramig R. F. Template-dependent, in vitro replication of rotavirus RNA. J Virol. 1994 Nov;68(11):7030–7039. doi: 10.1128/jvi.68.11.7030-7039.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  3. Esteban L. M., Fujimura T., García-Cuéllar M., Esteban R. Association of yeast viral 23 S RNA with its putative RNA-dependent RNA polymerase. J Biol Chem. 1994 Nov 25;269(47):29771–29777. [PubMed] [Google Scholar]
  4. Esteban R., Fujimura T., Wickner R. B. Internal and terminal cis-acting sites are necessary for in vitro replication of the L-A double-stranded RNA virus of yeast. EMBO J. 1989 Mar;8(3):947–954. doi: 10.1002/j.1460-2075.1989.tb03456.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Esteban R., Fujimura T., Wickner R. B. Site-specific binding of viral plus single-stranded RNA to replicase-containing open virus-like particles of yeast. Proc Natl Acad Sci U S A. 1988 Jun;85(12):4411–4415. doi: 10.1073/pnas.85.12.4411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fujimura T., Esteban R., Wickner R. B. In vitro L-A double-stranded RNA synthesis in virus-like particles from Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1986 Jun;83(12):4433–4437. doi: 10.1073/pnas.83.12.4433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fujimura T., Wickner R. B. Replicase of L-A virus-like particles of Saccharomyces cerevisiae. In vitro conversion of exogenous L-A and M1 single-stranded RNAs to double-stranded form. J Biol Chem. 1988 Jan 5;263(1):454–460. [PubMed] [Google Scholar]
  8. Huan B. F., Shen Y. Q., Bruenn J. A. In vivo mapping of a sequence required for interference with the yeast killer virus. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1271–1275. doi: 10.1073/pnas.88.4.1271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jacobson S. J., Konings D. A., Sarnow P. Biochemical and genetic evidence for a pseudoknot structure at the 3' terminus of the poliovirus RNA genome and its role in viral RNA amplification. J Virol. 1993 Jun;67(6):2961–2971. doi: 10.1128/jvi.67.6.2961-2971.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kaper J. M. Satellite-induced viral symptom modulation in plants: a case of nested parasitic nucleic acids competing for genetic expression. Res Virol. 1992 Jan-Feb;143(1):5–10. doi: 10.1016/s0923-2516(06)80070-1. [DOI] [PubMed] [Google Scholar]
  11. Khoshnan A., Alderete J. F. Multiple double-stranded RNA segments are associated with virus particles infecting Trichomonas vaginalis. J Virol. 1993 Dec;67(12):6950–6955. doi: 10.1128/jvi.67.12.6950-6955.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Khoshnan A., Alderete J. F. Trichomonas vaginalis with a double-stranded RNA virus has upregulated levels of phenotypically variable immunogen mRNA. J Virol. 1994 Jun;68(6):4035–4038. doi: 10.1128/jvi.68.6.4035-4038.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Khoshnan A., Provenzano D., Alderete J. F. Unique double-stranded RNAs associated with the Trichomonas vaginalis virus are synthesized by viral RNA-dependent RNA polymerase. J Virol. 1994 Nov;68(11):7108–7114. doi: 10.1128/jvi.68.11.7108-7114.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Matsumoto Y., Fishel R., Wickner R. B. Circular single-stranded RNA replicon in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1990 Oct;87(19):7628–7632. doi: 10.1073/pnas.87.19.7628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Provenzano D., Alderete J. F. Analysis of human immunoglobulin-degrading cysteine proteinases of Trichomonas vaginalis. Infect Immun. 1995 Sep;63(9):3388–3395. doi: 10.1128/iai.63.9.3388-3395.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Tai J. H., Ip C. F. The cDNA sequence of Trichomonas vaginalis virus-T1 double-stranded RNA. Virology. 1995 Jan 10;206(1):773–776. doi: 10.1016/s0042-6822(95)80008-5. [DOI] [PubMed] [Google Scholar]
  18. Tien P., Wu G. S. Satellite RNA for the biocontrol of plant disease. Adv Virus Res. 1991;39:321–339. doi: 10.1016/s0065-3527(08)60799-x. [DOI] [PubMed] [Google Scholar]
  19. Wang A. L., Wang C. C. The double-stranded RNA in Trichomonas vaginalis may originate from virus-like particles. Proc Natl Acad Sci U S A. 1986 Oct;83(20):7956–7960. doi: 10.1073/pnas.83.20.7956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wang A., Wang C. C., Alderete J. F. Trichomonas vaginalis phenotypic variation occurs only among trichomonads infected with the double-stranded RNA virus. J Exp Med. 1987 Jul 1;166(1):142–150. doi: 10.1084/jem.166.1.142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Wesolowski M., Wickner R. B. Two new double-stranded RNA molecules showing non-mendelian inheritance and heat inducibility in Saccharomyces cerevisiae. Mol Cell Biol. 1984 Jan;4(1):181–187. doi: 10.1128/mcb.4.1.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wickner R. B. Double-stranded and single-stranded RNA viruses of Saccharomyces cerevisiae. Annu Rev Microbiol. 1992;46:347–375. doi: 10.1146/annurev.mi.46.100192.002023. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES