Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1995 Nov;69(11):7138–7146. doi: 10.1128/jvi.69.11.7138-7146.1995

Frequent disruption of the Nf1 gene by a novel murine AIDS virus-related provirus in BXH-2 murine myeloid lymphomas.

B C Cho 1, J D Shaughnessy Jr 1, D A Largaespada 1, H G Bedigian 1, A M Buchberg 1, N A Jenkins 1, N G Copeland 1
PMCID: PMC189634  PMID: 7474134

Abstract

Evi-2, a common site of viral integration in BXH-2 myeloid lymphomas, is located within a large intron of the Nf1 tumor suppressor gene. Viral integration at Evi-2 appears to induce disease by disrupting normal Nf1 expression. During our attempts to characterize the nature of the proviruses located at Evi-2, we found that approximately half of the proviruses were defective nonecotropic proviruses (A. M. Buchberg, H. G. Bedigian, N. A. Jenkins, and N. G. Copeland, Mol. Cell. Biol. 10:4658-4666, 1990). This was surprising, since most proviruses characterized at other BXH-2 common integration sites are full-length ecotropic viruses. In the studies described here, we found that this defective provirus carries two large deletions, one in pol and one in env, and is structurally related to another murine retrovirus, the murine AIDS retrovirus. By using oligonucleotide probes specific for this defective provirus, designated MRV, we showed that MRV-related proviruses are carried as endogenous germ line proviruses in most inbred strains. In addition, we identified the endogenous MRV provirus that gives rise to the defective proviruses identified at Evi-2. We present a model that accounts for the positive selection of MRV proviruses at Evi-2, which may allow selective identification of common viral integration sites harboring tumor suppressor genes.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amanuma H., Laigret F., Nishi M., Ikawa Y., Khan A. S. Identification of putative endogenous proviral templates for progenitor mink cell focus-forming (MCF) MuLV-related RNAs. Virology. 1988 Jun;164(2):556–561. doi: 10.1016/0042-6822(88)90573-9. [DOI] [PubMed] [Google Scholar]
  2. Aziz D. C., Hanna Z., Jolicoeur P. Severe immunodeficiency disease induced by a defective murine leukaemia virus. Nature. 1989 Apr 6;338(6215):505–508. doi: 10.1038/338505a0. [DOI] [PubMed] [Google Scholar]
  3. Bedigian H. G., Johnson D. A., Jenkins N. A., Copeland N. G., Evans R. Spontaneous and induced leukemias of myeloid origin in recombinant inbred BXH mice. J Virol. 1984 Sep;51(3):586–594. doi: 10.1128/jvi.51.3.586-594.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bedigian H. G., Shepel L. A., Hoppe P. C. Transplacental transmission of a leukemogenic murine leukemia virus. J Virol. 1993 Oct;67(10):6105–6109. doi: 10.1128/jvi.67.10.6105-6109.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bedigian H. G., Taylor B. A., Meier H. Expression of murine leukemia viruses in the highly lymphomatous BXH-2 recombinant inbred mouse strain. J Virol. 1981 Aug;39(2):632–640. doi: 10.1128/jvi.39.2.632-640.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Berns A. Tumorigenesis in transgenic mice: identification and characterization of synergizing oncogenes. J Cell Biochem. 1991 Oct;47(2):130–135. doi: 10.1002/jcb.240470206. [DOI] [PubMed] [Google Scholar]
  7. Buchberg A. M., Bedigian H. G., Jenkins N. A., Copeland N. G. Evi-2, a common integration site involved in murine myeloid leukemogenesis. Mol Cell Biol. 1990 Sep;10(9):4658–4666. doi: 10.1128/mcb.10.9.4658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Casabianca A., Magnani M. A p12 gag gene homologue is present in the mouse genome. Biochem Mol Biol Int. 1994 Mar;32(4):691–696. [PubMed] [Google Scholar]
  9. Chattopadhyay S. K., Lander M. R., Rands E., Lowy D. R. Structure of endogenous murine leukemia virus DNA in mouse genomes. Proc Natl Acad Sci U S A. 1980 Oct;77(10):5774–5778. doi: 10.1073/pnas.77.10.5774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chattopadhyay S. K., Morse H. C., 3rd, Makino M., Ruscetti S. K., Hartley J. W. Defective virus is associated with induction of murine retrovirus-induced immunodeficiency syndrome. Proc Natl Acad Sci U S A. 1989 May;86(10):3862–3866. doi: 10.1073/pnas.86.10.3862. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Chattopadhyay S. K., Sengupta D. N., Fredrickson T. N., Morse H. C., 3rd, Hartley J. W. Characteristics and contributions of defective, ecotropic, and mink cell focus-inducing viruses involved in a retrovirus-induced immunodeficiency syndrome of mice. J Virol. 1991 Aug;65(8):4232–4241. doi: 10.1128/jvi.65.8.4232-4241.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cheung S. C., Chattopadhyay S. K., Morse H. C., 3rd, Pitha P. M. Expression of defective virus and cytokine genes in murine AIDS. J Virol. 1991 Feb;65(2):823–828. doi: 10.1128/jvi.65.2.823-828.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Dougherty J. P., Temin H. M. Determination of the rate of base-pair substitution and insertion mutations in retrovirus replication. J Virol. 1988 Aug;62(8):2817–2822. doi: 10.1128/jvi.62.8.2817-2822.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Frankel W. N., Stoye J. P., Taylor B. A., Coffin J. M. A linkage map of endogenous murine leukemia proviruses. Genetics. 1990 Feb;124(2):221–236. doi: 10.1093/genetics/124.2.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Frankel W. N., Stoye J. P., Taylor B. A., Coffin J. M. Genetic analysis of endogenous xenotropic murine leukemia viruses: association with two common mouse mutations and the viral restriction locus Fv-1. J Virol. 1989 Apr;63(4):1763–1774. doi: 10.1128/jvi.63.4.1763-1774.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Fredholm M., Policastro P. F., Wilson M. C. The dispersion of defective endogenous murine retroviral elements suggests retrotransposition-mediated amplification. DNA Cell Biol. 1991 Dec;10(10):713–722. doi: 10.1089/dna.1991.10.713. [DOI] [PubMed] [Google Scholar]
  18. Gutmann D. H., Collins F. S. The neurofibromatosis type 1 gene and its protein product, neurofibromin. Neuron. 1993 Mar;10(3):335–343. doi: 10.1016/0896-6273(93)90324-k. [DOI] [PubMed] [Google Scholar]
  19. Herr W. Nucleotide sequence of AKV murine leukemia virus. J Virol. 1984 Feb;49(2):471–478. doi: 10.1128/jvi.49.2.471-478.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Huang M., Jolicoeur P. Characterization of the gag/fusion protein encoded by the defective Duplan retrovirus inducing murine acquired immunodeficiency syndrome. J Virol. 1990 Dec;64(12):5764–5772. doi: 10.1128/jvi.64.12.5764-5772.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Huang M., Jolicoeur P. Myristylation of Pr60gag of the murine AIDS-defective virus is required to induce disease and notably for the expansion of its target cells. J Virol. 1994 Sep;68(9):5648–5655. doi: 10.1128/jvi.68.9.5648-5655.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Huang M., Simard C., Kay D. G., Jolicoeur P. The majority of cells infected with the defective murine AIDS virus belong to the B-cell lineage. J Virol. 1991 Dec;65(12):6562–6571. doi: 10.1128/jvi.65.12.6562-6571.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hügin A. W., Vacchio M. S., Morse H. C., 3rd A virus-encoded "superantigen" in a retrovirus-induced immunodeficiency syndrome of mice. Science. 1991 Apr 19;252(5004):424–427. doi: 10.1126/science.1850169. [DOI] [PubMed] [Google Scholar]
  24. Ihle J. N., Morishita K., Matsugi T., Bartholomew C. Insertional mutagenesis and transformation of hematopoietic stem cells. Prog Clin Biol Res. 1990;352:329–337. [PubMed] [Google Scholar]
  25. Jenkins N. A., Copeland N. G., Taylor B. A., Bedigian H. G., Lee B. K. Ecotropic murine leukemia virus DNA content of normal and lymphomatous tissues of BXH-2 recombinant inbred mice. J Virol. 1982 May;42(2):379–388. doi: 10.1128/jvi.42.2.379-388.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kanagawa O., Nussrallah B. A., Wiebenga M. E., Murphy K. M., Morse H. C., 3rd, Carbone F. R. Murine AIDS superantigen reactivity of the T cells bearing V beta 5 T cell antigen receptor. J Immunol. 1992 Jul 1;149(1):9–16. [PubMed] [Google Scholar]
  27. Klinken S. P., Fredrickson T. N., Hartley J. W., Yetter R. A., Morse H. C., 3rd Evolution of B cell lineage lymphomas in mice with a retrovirus-induced immunodeficiency syndrome, MAIDS. J Immunol. 1988 Feb 15;140(4):1123–1131. [PubMed] [Google Scholar]
  28. Kubo Y., Kakimi K., Higo K., Wang L., Kobayashi H., Kuribayashi K., Masuda T., Hirama T., Ishimoto A. The p15gag and p12gag regions are both necessary for the pathogenicity of the murine AIDS virus. J Virol. 1994 Sep;68(9):5532–5537. doi: 10.1128/jvi.68.9.5532-5537.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Kubo Y., Nakagawa Y., Kakimi K., Matsui H., Higo K., Wang L., Kobayashi H., Hirama T., Ishimoto A. Molecular cloning and characterization of a murine AIDS virus-related endogenous transcript expressed in C57BL/6 mice. J Gen Virol. 1994 Apr;75(Pt 4):881–888. doi: 10.1099/0022-1317-75-4-881. [DOI] [PubMed] [Google Scholar]
  30. Kubo Y., Nakagawa Y., Kakimi K., Matsui H., Iwashiro M., Kuribayashi K., Masuda T., Hiai H., Hirama T., Yanagawa S. Presence of transplantable T-lymphoid cells in C57BL/6 mice infected with murine AIDS virus. J Virol. 1992 Sep;66(9):5691–5695. doi: 10.1128/jvi.66.9.5691-5695.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. LATARJET R., DUPLAN J. F. Experiment and discussion on leukaemogenesis by cell-free extracts of radiation-induced leukaemia in mice. Int J Radiat Biol Relat Stud Phys Chem Med. 1962 Aug;5:339–344. doi: 10.1080/09553006214550911. [DOI] [PubMed] [Google Scholar]
  32. Largaespada D. A., Shaughnessy J. D., Jr, Jenkins N. A., Copeland N. G. Retroviral integration at the Evi-2 locus in BXH-2 myeloid leukemia cell lines disrupts Nf1 expression without changes in steady-state Ras-GTP levels. J Virol. 1995 Aug;69(8):5095–5102. doi: 10.1128/jvi.69.8.5095-5102.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Manly K. F. A Macintosh program for storage and analysis of experimental genetic mapping data. Mamm Genome. 1993;4(6):303–313. doi: 10.1007/BF00357089. [DOI] [PubMed] [Google Scholar]
  34. O'Connell P., Viskochil D., Buchberg A. M., Fountain J., Cawthon R. M., Culver M., Stevens J., Rich D. C., Ledbetter D. H., Wallace M. The human homolog of murine Evi-2 lies between two von Recklinghausen neurofibromatosis translocations. Genomics. 1990 Aug;7(4):547–554. doi: 10.1016/0888-7543(90)90198-4. [DOI] [PubMed] [Google Scholar]
  35. O'Neill R. R., Buckler C. E., Theodore T. S., Martin M. A., Repaske R. Envelope and long terminal repeat sequences of a cloned infectious NZB xenotropic murine leukemia virus. J Virol. 1985 Jan;53(1):100–106. doi: 10.1128/jvi.53.1.100-106.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Peters G. Oncogenes at viral integration sites. Cell Growth Differ. 1990 Oct;1(10):503–510. [PubMed] [Google Scholar]
  37. Policastro P. F., Fredholm M., Wilson M. C. Truncated gag products encoded by Gv-1-responsive endogenous retrovirus loci. J Virol. 1989 Oct;63(10):4136–4147. doi: 10.1128/jvi.63.10.4136-4147.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Pozsgay J. M., Beilharz M. W., Wines B. D., Hess A. D., Pitha P. M. The MA (p15) and p12 regions of the gag gene are sufficient for the pathogenicity of the murine AIDS virus. J Virol. 1993 Oct;67(10):5989–5999. doi: 10.1128/jvi.67.10.5989-5999.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Quint W., Boelens W., van Wezenbeek P., Cuypers T., Maandag E. R., Selten G., Berns A. Generation of AKR mink cell focus-forming viruses: a conserved single-copy xenotrope-like provirus provides recombinant long terminal repeat sequences. J Virol. 1984 May;50(2):432–438. doi: 10.1128/jvi.50.2.432-438.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Schowalter D. B., Sommer S. S. The generation of radiolabeled DNA and RNA probes with polymerase chain reaction. Anal Biochem. 1989 Feb 15;177(1):90–94. doi: 10.1016/0003-2697(89)90019-5. [DOI] [PubMed] [Google Scholar]
  42. Selvey L. A., Morse H. C., 3rd, Granger L. G., Hodes R. J. Preferential expansion and activation of V beta 5+ CD4+ T cells in murine acquired immunodeficiency syndrome. J Immunol. 1993 Aug 1;151(3):1712–1722. [PubMed] [Google Scholar]
  43. Shannon K. M., O'Connell P., Martin G. A., Paderanga D., Olson K., Dinndorf P., McCormick F. Loss of the normal NF1 allele from the bone marrow of children with type 1 neurofibromatosis and malignant myeloid disorders. N Engl J Med. 1994 Mar 3;330(9):597–601. doi: 10.1056/NEJM199403033300903. [DOI] [PubMed] [Google Scholar]
  44. Shannon K. M., Watterson J., Johnson P., O'Connell P., Lange B., Shah N., Steinherz P., Kan Y. W., Priest J. R. Monosomy 7 myeloproliferative disease in children with neurofibromatosis, type 1: epidemiology and molecular analysis. Blood. 1992 Mar 1;79(5):1311–1318. [PubMed] [Google Scholar]
  45. Shaughnessy J., Wiener F., Huppi K., Mushinski J. F., Potter M. A novel c-myc-activating reciprocal T(12;15) chromosomal translocation juxtaposes S alpha to Pvt-1 in a mouse plasmacytoma. Oncogene. 1994 Jan;9(1):247–253. [PubMed] [Google Scholar]
  46. Silver J. Confidence limits for estimates of gene linkage based on analysis of recombinant inbred strains. J Hered. 1985 Nov-Dec;76(6):436–440. doi: 10.1093/oxfordjournals.jhered.a110140. [DOI] [PubMed] [Google Scholar]
  47. Simard C., Huang M., Jolicoeur P. Murine AIDS is initiated in the lymph nodes draining the site of inoculation, and the infected B cells influence T cells located at distance, in noninfected organs. J Virol. 1994 Mar;68(3):1903–1912. doi: 10.1128/jvi.68.3.1903-1912.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Tsao S. G., Brunk C. F., Pearlman R. E. Hybridization of nucleic acids directly in agarose gels. Anal Biochem. 1983 Jun;131(2):365–372. doi: 10.1016/0003-2697(83)90185-9. [DOI] [PubMed] [Google Scholar]
  49. Tucker P. K., Lee B. K., Lundrigan B. L., Eicher E. M. Geographic origin of the Y chromosomes in "old" inbred strains of mice. Mamm Genome. 1992;3(5):254–261. doi: 10.1007/BF00292153. [DOI] [PubMed] [Google Scholar]
  50. Viskochil D., Buchberg A. M., Xu G., Cawthon R. M., Stevens J., Wolff R. K., Culver M., Carey J. C., Copeland N. G., Jenkins N. A. Deletions and a translocation interrupt a cloned gene at the neurofibromatosis type 1 locus. Cell. 1990 Jul 13;62(1):187–192. doi: 10.1016/0092-8674(90)90252-a. [DOI] [PubMed] [Google Scholar]
  51. van Lohuizen M., Berns A. Tumorigenesis by slow-transforming retroviruses--an update. Biochim Biophys Acta. 1990 Dec 11;1032(2-3):213–235. doi: 10.1016/0304-419x(90)90005-l. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES