Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1995 Nov;69(11):7180–7186. doi: 10.1128/jvi.69.11.7180-7186.1995

An active-site mutation in the human immunodeficiency virus type 1 proteinase (PR) causes reduced PR activity and loss of PR-mediated cytotoxicity without apparent effect on virus maturation and infectivity.

J Konvalinka 1, M A Litterst 1, R Welker 1, H Kottler 1, F Rippmann 1, A M Heuser 1, H G Kräusslich 1
PMCID: PMC189639  PMID: 7474139

Abstract

Infectious retrovirus particles are derived from structural polyproteins which are cleaved by the viral proteinase (PR) during virion morphogenesis. Besides cleaving viral polyproteins, which is essential for infectivity, PR of human immunodeficiency virus (HIV) also cleaves cellular proteins and PR expression causes a pronounced cytotoxic effect. Retroviral PRs are aspartic proteases and contain two copies of the triplet Asp-Thr-Gly in the active center with the threonine adjacent to the catalytic aspartic acid presumed to have an important structural role. We have changed this threonine in HIV type 1 PR to a serine. The purified mutant enzyme had an approximately 5- to 10-fold lower activity against HIV type 1 polyprotein and peptide substrates compared with the wild-type enzyme. It did not induce toxicity on bacterial expression and yielded significantly reduced cleavage of cytoskeletal proteins in vitro. Cleavage of vimentin in mutant-infected T-cell lines was also markedly reduced. Mutant virus did, however, elicit productive infection of several T-cell lines and of primary human lymphocytes with no significant difference in polyprotein cleavage and with similar infection kinetics and titer compared with wild-type virus. The discrepancy between reduced processing in vitro and normal virion maturation can be explained by the observation that reduced activity was due to an increase in Km which may not be relevant at the high substrate concentration in the virus particle. This mutation enables us therefore to dissociate the essential function of PR in viral maturation from its cytotoxic effect.

Full Text

The Full Text of this article is available as a PDF (337.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adachi A., Gendelman H. E., Koenig S., Folks T., Willey R., Rabson A., Martin M. A. Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. J Virol. 1986 Aug;59(2):284–291. doi: 10.1128/jvi.59.2.284-291.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ainsztein A. M., Purich D. L. Cleavage of bovine brain microtubule-associated protein-2 by human immunodeficiency virus proteinase. J Neurochem. 1992 Sep;59(3):874–880. doi: 10.1111/j.1471-4159.1992.tb08325.x. [DOI] [PubMed] [Google Scholar]
  3. Chaffee S., Leeds J. M., Matthews T. J., Weinhold K. J., Skinner M., Bolognesi D. P., Hershfield M. S. Phenotypic variation in the response to the human immunodeficiency virus among derivatives of the CEM T and WIL-2 B cell lines. J Exp Med. 1988 Aug 1;168(2):605–621. doi: 10.1084/jem.168.2.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Davies D. R. The structure and function of the aspartic proteinases. Annu Rev Biophys Biophys Chem. 1990;19:189–215. doi: 10.1146/annurev.bb.19.060190.001201. [DOI] [PubMed] [Google Scholar]
  5. Ehrlich L. S., Krausslich H. G., Wimmer E., Carter C. A. Expression in Escherichia coli and purification of human immunodeficiency virus type 1 capsid protein (p24). AIDS Res Hum Retroviruses. 1990 Oct;6(10):1169–1175. doi: 10.1089/aid.1990.6.1169. [DOI] [PubMed] [Google Scholar]
  6. Grinde B., Cameron C. E., Leis J., Weber I. T., Wlodawer A., Burstein H., Skalka A. M. Analysis of substrate interactions of the Rous sarcoma virus wild type and mutant proteases and human immunodeficiency virus-1 protease using a set of systematically altered peptide substrates. J Biol Chem. 1992 May 15;267(14):9491–9498. [PubMed] [Google Scholar]
  7. Harada S., Koyanagi Y., Yamamoto N. Infection of HTLV-III/LAV in HTLV-I-carrying cells MT-2 and MT-4 and application in a plaque assay. Science. 1985 Aug 9;229(4713):563–566. doi: 10.1126/science.2992081. [DOI] [PubMed] [Google Scholar]
  8. Hoshikawa N., Kojima A., Yasuda A., Takayashiki E., Masuko S., Chiba J., Sata T., Kurata T. Role of the gag and pol genes of human immunodeficiency virus in the morphogenesis and maturation of retrovirus-like particles expressed by recombinant vaccinia virus: an ultrastructural study. J Gen Virol. 1991 Oct;72(Pt 10):2509–2517. doi: 10.1099/0022-1317-72-10-2509. [DOI] [PubMed] [Google Scholar]
  9. Höner B., Shoeman R. L., Traub P. Degradation of cytoskeletal proteins by the human immunodeficiency virus type 1 protease. Cell Biol Int Rep. 1992 Jul;16(7):603–612. doi: 10.1016/s0309-1651(06)80002-0. [DOI] [PubMed] [Google Scholar]
  10. Ido E., Han H. P., Kezdy F. J., Tang J. Kinetic studies of human immunodeficiency virus type 1 protease and its active-site hydrogen bond mutant A28S. J Biol Chem. 1991 Dec 25;266(36):24359–24366. [PubMed] [Google Scholar]
  11. Kaplan A. H., Swanstrom R. Human immunodeficiency virus type 1 Gag proteins are processed in two cellular compartments. Proc Natl Acad Sci U S A. 1991 May 15;88(10):4528–4532. doi: 10.1073/pnas.88.10.4528. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kaplan A. H., Zack J. A., Knigge M., Paul D. A., Kempf D. J., Norbeck D. W., Swanstrom R. Partial inhibition of the human immunodeficiency virus type 1 protease results in aberrant virus assembly and the formation of noninfectious particles. J Virol. 1993 Jul;67(7):4050–4055. doi: 10.1128/jvi.67.7.4050-4055.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kirchner J., Sandmeyer S. Proteolytic processing of Ty3 proteins is required for transposition. J Virol. 1993 Jan;67(1):19–28. doi: 10.1128/jvi.67.1.19-28.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kohl N. E., Emini E. A., Schleif W. A., Davis L. J., Heimbach J. C., Dixon R. A., Scolnick E. M., Sigal I. S. Active human immunodeficiency virus protease is required for viral infectivity. Proc Natl Acad Sci U S A. 1988 Jul;85(13):4686–4690. doi: 10.1073/pnas.85.13.4686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Konvalinka J., Heuser A. M., Hruskova-Heidingsfeldova O., Vogt V. M., Sedlacek J., Strop P., Kräusslich H. G. Proteolytic processing of particle-associated retroviral polyproteins by homologous and heterologous viral proteinases. Eur J Biochem. 1995 Feb 15;228(1):191–198. doi: 10.1111/j.1432-1033.1995.tb20249.x. [DOI] [PubMed] [Google Scholar]
  16. Konvalinka J., Horejsí M., Andreánsky M., Novek P., Pichová I., Bláha I., Fábry M., Sedlácek J., Foundling S., Strop P. An engineered retroviral proteinase from myeloblastosis associated virus acquires pH dependence and substrate specificity of the HIV-1 proteinase. EMBO J. 1992 Mar;11(3):1141–1144. doi: 10.1002/j.1460-2075.1992.tb05154.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Konvalinka J., Löchelt M., Zentgraf H., Flügel R. M., Kräusslich H. G. Active foamy virus proteinase is essential for virus infectivity but not for formation of a Pol polyprotein. J Virol. 1995 Nov;69(11):7264–7268. doi: 10.1128/jvi.69.11.7264-7268.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kotler M., Danho W., Katz R. A., Leis J., Skalka A. M. Avian retroviral protease and cellular aspartic proteases are distinguished by activities on peptide substrates. J Biol Chem. 1989 Feb 25;264(6):3428–3435. [PubMed] [Google Scholar]
  19. Kräusslich H. G. Human immunodeficiency virus proteinase dimer as component of the viral polyprotein prevents particle assembly and viral infectivity. Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3213–3217. doi: 10.1073/pnas.88.8.3213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kräusslich H. G., Ochsenbauer C., Traenckner A. M., Mergener K., Fäcke M., Gelderblom H. R., Bosch V. Analysis of protein expression and virus-like particle formation in mammalian cell lines stably expressing HIV-1 gag and env gene products with or without active HIV proteinase. Virology. 1993 Feb;192(2):605–617. doi: 10.1006/viro.1993.1077. [DOI] [PubMed] [Google Scholar]
  21. Kräusslich H. G. Specific inhibitor of human immunodeficiency virus proteinase prevents the cytotoxic effects of a single-chain proteinase dimer and restores particle formation. J Virol. 1992 Jan;66(1):567–572. doi: 10.1128/jvi.66.1.567-572.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kräusslich H. G., Wimmer E. Viral proteinases. Annu Rev Biochem. 1988;57:701–754. doi: 10.1146/annurev.bi.57.070188.003413. [DOI] [PubMed] [Google Scholar]
  23. Kunkel T. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A. 1985 Jan;82(2):488–492. doi: 10.1073/pnas.82.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Leis J., Baltimore D., Bishop J. M., Coffin J., Fleissner E., Goff S. P., Oroszlan S., Robinson H., Skalka A. M., Temin H. M. Standardized and simplified nomenclature for proteins common to all retroviruses. J Virol. 1988 May;62(5):1808–1809. doi: 10.1128/jvi.62.5.1808-1809.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mergener K., Fäcke M., Welker R., Brinkmann V., Gelderblom H. R., Kräusslich H. G. Analysis of HIV particle formation using transient expression of subviral constructs in mammalian cells. Virology. 1992 Jan;186(1):25–39. doi: 10.1016/0042-6822(92)90058-w. [DOI] [PubMed] [Google Scholar]
  26. Ohlendorf D. H., Foundling S. I., Wendoloski J. J., Sedlacek J., Strop P., Salemme F. R. Structural studies of the retroviral proteinase from avian myeloblastosis associated virus. Proteins. 1992 Nov;14(3):382–391. doi: 10.1002/prot.340140307. [DOI] [PubMed] [Google Scholar]
  27. Richards A. D., Phylip L. H., Farmerie W. G., Scarborough P. E., Alvarez A., Dunn B. M., Hirel P. H., Konvalinka J., Strop P., Pavlickova L. Sensitive, soluble chromogenic substrates for HIV-1 proteinase. J Biol Chem. 1990 May 15;265(14):7733–7736. [PubMed] [Google Scholar]
  28. Rivière Y., Blank V., Kourilsky P., Israël A. Processing of the precursor of NF-kappa B by the HIV-1 protease during acute infection. Nature. 1991 Apr 18;350(6319):625–626. doi: 10.1038/350625a0. [DOI] [PubMed] [Google Scholar]
  29. Roberts N. A., Martin J. A., Kinchington D., Broadhurst A. V., Craig J. C., Duncan I. B., Galpin S. A., Handa B. K., Kay J., Kröhn A. Rational design of peptide-based HIV proteinase inhibitors. Science. 1990 Apr 20;248(4953):358–361. doi: 10.1126/science.2183354. [DOI] [PubMed] [Google Scholar]
  30. Rosé J. R., Babé L. M., Craik C. S. Defining the level of human immunodeficiency virus type 1 (HIV-1) protease activity required for HIV-1 particle maturation and infectivity. J Virol. 1995 May;69(5):2751–2758. doi: 10.1128/jvi.69.5.2751-2758.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Salahuddin S. Z., Markham P. D., Wong-Staal F., Franchini G., Kalyanaraman V. S., Gallo R. C. Restricted expression of human T-cell leukemia--lymphoma virus (HTLV) in transformed human umbilical cord blood lymphocytes. Virology. 1983 Aug;129(1):51–64. doi: 10.1016/0042-6822(83)90395-1. [DOI] [PubMed] [Google Scholar]
  32. Sedlacek J., Fabry M., Coward J. E., Horejsi M., Strop P., Luftig R. B. Myeloblastosis associated virus (MAV) proteinase site-mutated to be HIV-like has a higher activity and allows production of infectious but morphologically altered virus. Virology. 1993 Feb;192(2):667–672. doi: 10.1006/viro.1993.1085. [DOI] [PubMed] [Google Scholar]
  33. Shoeman R. L., Höner B., Stoller T. J., Kesselmeier C., Miedel M. C., Traub P., Graves M. C. Human immunodeficiency virus type 1 protease cleaves the intermediate filament proteins vimentin, desmin, and glial fibrillary acidic protein. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6336–6340. doi: 10.1073/pnas.87.16.6336. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Strop P., Konvalinka J., Stys D., Pavlickova L., Blaha I., Velek J., Travnicek M., Kostka V., Sedlacek J. Specificity studies on retroviral proteinase from myeloblastosis-associated virus. Biochemistry. 1991 Apr 9;30(14):3437–3443. doi: 10.1021/bi00228a013. [DOI] [PubMed] [Google Scholar]
  35. Studier F. W., Rosenberg A. H., Dunn J. J., Dubendorff J. W. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 1990;185:60–89. doi: 10.1016/0076-6879(90)85008-c. [DOI] [PubMed] [Google Scholar]
  36. Tomasselli A. G., Hui J. O., Adams L., Chosay J., Lowery D., Greenberg B., Yem A., Deibel M. R., Zürcher-Neely H., Heinrikson R. L. Actin, troponin C, Alzheimer amyloid precursor protein and pro-interleukin 1 beta as substrates of the protease from human immunodeficiency virus. J Biol Chem. 1991 Aug 5;266(22):14548–14553. [PubMed] [Google Scholar]
  37. Wallin M., Deinum J., Goobar L., Danielson U. H. Proteolytic cleavage of microtubule-associated proteins by retroviral proteinases. J Gen Virol. 1990 Sep;71(Pt 9):1985–1991. doi: 10.1099/0022-1317-71-9-1985. [DOI] [PubMed] [Google Scholar]
  38. Wlodawer A., Erickson J. W. Structure-based inhibitors of HIV-1 protease. Annu Rev Biochem. 1993;62:543–585. doi: 10.1146/annurev.bi.62.070193.002551. [DOI] [PubMed] [Google Scholar]
  39. Wlodawer A., Miller M., Jaskólski M., Sathyanarayana B. K., Baldwin E., Weber I. T., Selk L. M., Clawson L., Schneider J., Kent S. B. Conserved folding in retroviral proteases: crystal structure of a synthetic HIV-1 protease. Science. 1989 Aug 11;245(4918):616–621. doi: 10.1126/science.2548279. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES