Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1995 Nov;69(11):7300–7303. doi: 10.1128/jvi.69.11.7300-7303.1995

Inhibition of murine retrovirus-induced neurodegeneration in the spinal cord by explant culture.

R A Bessen 1, W P Lynch 1, J L Portis 1
PMCID: PMC189658  PMID: 7474158

Abstract

The neurovirulent chimeric mouse ecotropic retrovirus FrCasE causes a rapid neurodegenerative disease of the central nervous system (CNS) characterized by the appearance of spongiform lesions in motor areas 10 days after neonatal inoculation. To study the details of the pathogenic process, we examined the ability of an ex vivo spinal cord model to recapitulate disease. Organotypic spinal cord slice cultures were established from IRW mice 7 days after neonatal inoculation. This corresponds to a time when virus expression in the CNS is first detectable but spongiform changes have yet to evolve. Infectivity associated with these cultures peaked at 7 days in vitro and persisted at this level for 6 weeks. FrCasE infection of the spinal cord slices was primarily found associated with microglial cells. Infection of neurons, astrocytes, oligodendroglia, and endothelial cells was not observed; however, significant astrogliosis was found. Despite the presence of extensive microglial infection in close association with spinal motor neurons in organotypic cultures, no virus-specific spongiform degenerative changes were observed. These results suggest that removal of motor neurons from the developing CNS, despite maintaining the local cytoarchitectural relationships, prevents the virus from eliciting its pathological effects. Possible reasons for the interruption of lesion development are discussed.

Full Text

The Full Text of this article is available as a PDF (792.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews J. M., Andrews R. L. The comparative neuropathology of motor neuron diseases. UCLA Forum Med Sci. 1976;(19):181–216. [PubMed] [Google Scholar]
  2. Andrews J. M., Gardner M. B. Lower motor neuron degeneration associated with type C RNA virus infection in mice: neuropathological features. J Neuropathol Exp Neurol. 1974 Apr;33(2):285–307. doi: 10.1097/00005072-197404000-00007. [DOI] [PubMed] [Google Scholar]
  3. Baszler T. V., Zachary J. F. Murine retroviral neurovirulence correlates with an enhanced ability ofvirus to infect selectively, replicate in, and activate resident microglial cells. Am J Pathol. 1991 Mar;138(3):655–671. [PMC free article] [PubMed] [Google Scholar]
  4. Baszler T. V., Zachary J. F. Murine retroviral-induced spongiform neuronal degeneration parallels resident microglial cell infection: ultrastructural findings. Lab Invest. 1990 Nov;63(5):612–623. [PubMed] [Google Scholar]
  5. Coyle J. T., Bird S. J., Evans R. H., Gulley R. L., Nadler J. V., Nicklas W. J., Olney J. W. Excitatory amino acid neurotoxins: selectivity, specificity, and mechanisms of action. Based on an NRP one-day conference held June 30, 1980. Neurosci Res Program Bull. 1981;19(4):1–427. [PubMed] [Google Scholar]
  6. Czub M., Czub S., McAtee F. J., Portis J. L. Age-dependent resistance to murine retrovirus-induced spongiform neurodegeneration results from central nervous system-specific restriction of virus replication. J Virol. 1991 May;65(5):2539–2544. doi: 10.1128/jvi.65.5.2539-2544.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Czub S., Lynch W. P., Czub M., Portis J. L. Kinetic analysis of spongiform neurodegenerative disease induced by a highly virulent murine retrovirus. Lab Invest. 1994 May;70(5):711–723. [PubMed] [Google Scholar]
  8. Delfs J., Friend J., Ishimoto S., Saroff D. Ventral and dorsal horn acetylcholinesterase neurons are maintained in organotypic cultures of postnatal rat spinal cord explants. Brain Res. 1989 May 29;488(1-2):31–42. doi: 10.1016/0006-8993(89)90690-2. [DOI] [PubMed] [Google Scholar]
  9. Eddleston M., Mucke L. Molecular profile of reactive astrocytes--implications for their role in neurologic disease. Neuroscience. 1993 May;54(1):15–36. doi: 10.1016/0306-4522(93)90380-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Giulian D., Vaca K., Corpuz M. Brain glia release factors with opposing actions upon neuronal survival. J Neurosci. 1993 Jan;13(1):29–37. doi: 10.1523/JNEUROSCI.13-01-00029.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Giulian D., Wendt E., Vaca K., Noonan C. A. The envelope glycoprotein of human immunodeficiency virus type 1 stimulates release of neurotoxins from monocytes. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):2769–2773. doi: 10.1073/pnas.90.7.2769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gravel C., Kay D. G., Jolicoeur P. Identification of the infected target cell type in spongiform myeloencephalopathy induced by the neurotropic Cas-Br-E murine leukemia virus. J Virol. 1993 Nov;67(11):6648–6658. doi: 10.1128/jvi.67.11.6648-6658.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gähwiler B. H. Organotypic monolayer cultures of nervous tissue. J Neurosci Methods. 1981 Dec;4(4):329–342. doi: 10.1016/0165-0270(81)90003-0. [DOI] [PubMed] [Google Scholar]
  14. Kalb R. G., Hockfield S. Induction of a neuronal proteoglycan by the NMDA receptor in the developing spinal cord. Science. 1990 Oct 12;250(4978):294–296. doi: 10.1126/science.2145629. [DOI] [PubMed] [Google Scholar]
  15. Kalb R. G., Hockfield S. Molecular evidence for early activity-dependent development of hamster motor neurons. J Neurosci. 1988 Jul;8(7):2350–2360. doi: 10.1523/JNEUROSCI.08-07-02350.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kusaka H., Hirano A., Bornstein M. B., Raine C. S. Basal lamina formation by astrocytes in organotypic cultures of mouse spinal cord tissue. J Neuropathol Exp Neurol. 1985 May;44(3):295–303. doi: 10.1097/00005072-198505000-00007. [DOI] [PubMed] [Google Scholar]
  17. Köhler C., Schwarcz R., Fuxe K. Intrahippocampal injections of ibotenic acid provide histological evidence for a neurotoxic mechanism different from kainic acid. Neurosci Lett. 1979 Dec;15(2-3):223–228. doi: 10.1016/0304-3940(79)96117-2. [DOI] [PubMed] [Google Scholar]
  18. Lipton S. A. Requirement for macrophages in neuronal injury induced by HIV envelope protein gp120. Neuroreport. 1992 Oct;3(10):913–915. doi: 10.1097/00001756-199210000-00023. [DOI] [PubMed] [Google Scholar]
  19. Lynch W. P., Brown W. J., Spangrude G. J., Portis J. L. Microglial infection by a neurovirulent murine retrovirus results in defective processing of envelope protein and intracellular budding of virus particles. J Virol. 1994 May;68(5):3401–3409. doi: 10.1128/jvi.68.5.3401-3409.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lynch W. P., Czub S., McAtee F. J., Hayes S. F., Portis J. L. Murine retrovirus-induced spongiform encephalopathy: productive infection of microglia and cerebellar neurons in accelerated CNS disease. Neuron. 1991 Sep;7(3):365–379. doi: 10.1016/0896-6273(91)90289-c. [DOI] [PubMed] [Google Scholar]
  21. Lynch W. P., Portis J. L. Murine retrovirus-induced spongiform encephalopathy: disease expression is dependent on postnatal development of the central nervous system. J Virol. 1993 May;67(5):2601–2610. doi: 10.1128/jvi.67.5.2601-2610.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lynch W. P., Robertson S. J., Portis J. L. Induction of focal spongiform neurodegeneration in developmentally resistant mice by implantation of murine retrovirus-infected microglia. J Virol. 1995 Mar;69(3):1408–1419. doi: 10.1128/jvi.69.3.1408-1419.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. McAtee F. J., Portis J. L. Monoclonal antibodies specific for wild mouse neurotropic retrovirus: detection of comparable levels of virus replication in mouse strains susceptible and resistant to paralytic disease. J Virol. 1985 Dec;56(3):1018–1022. doi: 10.1128/jvi.56.3.1018-1022.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. McGeer E. G., McGeer P. L., Singh K. Kainate-induced degeneration of neostriatal neurons: dependency upon corticostriatal tract. Brain Res. 1978 Jan 13;139(2):381–383. doi: 10.1016/0006-8993(78)90941-1. [DOI] [PubMed] [Google Scholar]
  25. Portis J. L., Czub S., Garon C. F., McAtee F. J. Neurodegenerative disease induced by the wild mouse ecotropic retrovirus is markedly accelerated by long terminal repeat and gag-pol sequences from nondefective Friend murine leukemia virus. J Virol. 1990 Apr;64(4):1648–1656. doi: 10.1128/jvi.64.4.1648-1656.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. RUBIN H., TEMIN H. M. A radiological study of cell-virus interaction in the Rous sarcoma. Virology. 1959 Jan;7(1):75–91. doi: 10.1016/0042-6822(59)90178-3. [DOI] [PubMed] [Google Scholar]
  27. Rothstein J. D., Jin L., Dykes-Hoberg M., Kuncl R. W. Chronic inhibition of glutamate uptake produces a model of slow neurotoxicity. Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6591–6595. doi: 10.1073/pnas.90.14.6591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Shibata S., Tominaga K., Kagami-ishi Y., Watanabe S. Neuroprotective effect of protein kinase C inhibitors on oxygen/glucose free-induced decreases in 2-deoxyglucose uptake and CA1 field potentials in rat hippocampal slices. Brain Res. 1992 Oct 30;594(2):290–294. doi: 10.1016/0006-8993(92)91137-4. [DOI] [PubMed] [Google Scholar]
  29. Shikova E., Lin Y. C., Saha K., Brooks B. R., Wong P. K. Correlation of specific virus-astrocyte interactions and cytopathic effects induced by ts1, a neurovirulent mutant of Moloney murine leukemia virus. J Virol. 1993 Mar;67(3):1137–1147. doi: 10.1128/jvi.67.3.1137-1147.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Stoppini L., Buchs P. A., Muller D. A simple method for organotypic cultures of nervous tissue. J Neurosci Methods. 1991 Apr;37(2):173–182. doi: 10.1016/0165-0270(91)90128-m. [DOI] [PubMed] [Google Scholar]
  31. Tasker R. C., Coyle J. T., Vornov J. J. The regional vulnerability to hypoglycemia-induced neurotoxicity in organotypic hippocampal culture: protection by early tetrodotoxin or delayed MK-801. J Neurosci. 1992 Nov;12(11):4298–4308. doi: 10.1523/JNEUROSCI.12-11-04298.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Vornov J. J., Coyle J. T. Enhancement of NMDA receptor-mediated neurotoxicity in the hippocampal slice by depolarization and ischemia. Brain Res. 1991 Jul 26;555(1):99–106. doi: 10.1016/0006-8993(91)90865-s. [DOI] [PubMed] [Google Scholar]
  33. Vornov J. J., Coyle J. T. Glutamate neurotoxicity and the inhibition of protein synthesis in the hippocampal slice. J Neurochem. 1991 Mar;56(3):996–1006. doi: 10.1111/j.1471-4159.1991.tb02020.x. [DOI] [PubMed] [Google Scholar]
  34. Whetsell W. O., Jr, Schwarcz R. The organotypic tissue culture model of corticostriatal system used for examining amino acid neurotoxicity and its antagonism: studies on kainic acid, quinolinic acid and (-) 2-amino-7-phosphonoheptanoic acid. J Neural Transm Suppl. 1983;19:53–63. [PubMed] [Google Scholar]
  35. del Rio J. A., Heimrich B., Soriano E., Schwegler H., Frotscher M. Proliferation and differentiation of glial fibrillary acidic protein-immunoreactive glial cells in organotypic slice cultures of rat hippocampus. Neuroscience. 1991;43(2-3):335–347. doi: 10.1016/0306-4522(91)90298-3. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES