Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1995 Dec;69(12):7416–7422. doi: 10.1128/jvi.69.12.7416-7422.1995

Immunodominance of major histocompatibility complex class I-restricted influenza virus epitopes can be influenced by the T-cell receptor repertoire.

K Daly 1, P Nguyen 1, D L Woodland 1, M A Blackman 1
PMCID: PMC189678  PMID: 7494246

Abstract

We have used T-cell receptor beta-chain transgenic mice to determine the effects of a limited T-cell receptor repertoire on major histocompatibility complex class I-restricted epitope selection during the course of an influenza virus infection. Analysis of T-cell hybridomas generated from wild-type and transgenic mice demonstrated that the viral epitope recognized depended on the available T-cell receptor repertoire. Wild-type T-cell hybridomas recognized epitopes derived from the nucleoprotein and basic polymerase molecules, whereas hybridomas generated from transgenic mice recognized epitopes derived from the nonstructural protein and the matrix protein. There was no overlap in specificity between the two panels of hybridomas. This reciprocal pattern of specificity was also apparent in cytoxicity assays with brochoalveolar lavage cells isolated from the lungs of influenza virus-infected mice. T-cell receptor usage in the transgenic hybridomas was very restricted, with only one V alpha element used for ech of the two viral epitopes recognized. In the case of the hybridomas reactive to the nonstructural protein, sequence analysis showed that they all expressed V alpha 4J alpha 32 chains associated with the same junctional amino acids (Leu-Leu) that were encoded by five different nucleotide sequences, indicating a strong selection for T-cell receptor usage. Taken together, these data demonstrate that the available T-cell receptor repertoire can have a profound effect on the immunodominance of class I-restricted epitopes during a viral infection.

Full Text

The Full Text of this article is available as a PDF (231.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adorini L., Appella E., Doria G., Nagy Z. A. Mechanisms influencing the immunodominance of T cell determinants. J Exp Med. 1988 Dec 1;168(6):2091–2104. doi: 10.1084/jem.168.6.2091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allan W., Tabi Z., Cleary A., Doherty P. C. Cellular events in the lymph node and lung of mice with influenza. Consequences of depleting CD4+ T cells. J Immunol. 1990 May 15;144(10):3980–3986. [PubMed] [Google Scholar]
  3. Arnold L. W., LoCascio N. J., Lutz P. M., Pennell C. A., Klapper D., Haughton G. Antigen-induced lymphomagenesis: identification of a murine B cell lymphoma with known antigen specificity. J Immunol. 1983 Oct;131(4):2064–2068. [PubMed] [Google Scholar]
  4. Behlke M. A., Chou H. S., Huppi K., Loh D. Y. Murine T-cell receptor mutants with deletions of beta-chain variable region genes. Proc Natl Acad Sci U S A. 1986 Feb;83(3):767–771. doi: 10.1073/pnas.83.3.767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bennink J. R., Yewdell J. W. Murine cytotoxic T lymphocyte recognition of individual influenza virus proteins. High frequency of nonresponder MHC class I alleles. J Exp Med. 1988 Nov 1;168(5):1935–1939. doi: 10.1084/jem.168.5.1935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bennink J. R., Yewdell J. W., Smith G. L., Moss B. Anti-influenza virus cytotoxic T lymphocytes recognize the three viral polymerases and a nonstructural protein: responsiveness to individual viral antigens is major histocompatibility complex controlled. J Virol. 1987 Apr;61(4):1098–1102. doi: 10.1128/jvi.61.4.1098-1102.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Blackman M. A., Burgert H. G., Gerhard-Burgert H., Woodland D. L., Palmer E., Kappler J. W., Marrack P. A role for clonal inactivation in T cell tolerance to Mls-1a. Nature. 1990 Jun 7;345(6275):540–542. doi: 10.1038/345540a0. [DOI] [PubMed] [Google Scholar]
  8. Braciale T. J., Braciale V. L. Antigen presentation: structural themes and functional variations. Immunol Today. 1991 Apr;12(4):124–129. doi: 10.1016/0167-5699(91)90096-C. [DOI] [PubMed] [Google Scholar]
  9. Brändle D., Bürki K., Wallace V. A., Rohrer U. H., Mak T. W., Malissen B., Hengartner H., Pircher H. Involvement of both T cell receptor V alpha and V beta variable region domains and alpha chain junctional region in viral antigen recognition. Eur J Immunol. 1991 Sep;21(9):2195–2202. doi: 10.1002/eji.1830210930. [DOI] [PubMed] [Google Scholar]
  10. Cole G. A., Hogg T. L., Woodland D. L. The MHC class I-restricted T cell response to Sendai virus infection in C57BL/6 mice: a single immunodominant epitope elicits an extremely diverse repertoire of T cells. Int Immunol. 1994 Nov;6(11):1767–1775. doi: 10.1093/intimm/6.11.1767. [DOI] [PubMed] [Google Scholar]
  11. Cole G. A., Katz J. M., Hogg T. L., Ryan K. W., Portner A., Woodland D. L. Analysis of the primary T-cell response to Sendai virus infection in C57BL/6 mice: CD4+ T-cell recognition is directed predominantly to the hemagglutinin-neuraminidase glycoprotein. J Virol. 1994 Nov;68(11):6863–6870. doi: 10.1128/jvi.68.11.6863-6870.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Deckhut A. M., Allan W., McMickle A., Eichelberger M., Blackman M. A., Doherty P. C., Woodland D. L. Prominent usage of V beta 8.3 T cells in the H-2Db-restricted response to an influenza A virus nucleoprotein epitope. J Immunol. 1993 Sep 1;151(5):2658–2666. [PubMed] [Google Scholar]
  13. Dialynas D. P., Quan Z. S., Wall K. A., Pierres A., Quintáns J., Loken M. R., Pierres M., Fitch F. W. Characterization of the murine T cell surface molecule, designated L3T4, identified by monoclonal antibody GK1.5: similarity of L3T4 to the human Leu-3/T4 molecule. J Immunol. 1983 Nov;131(5):2445–2451. [PubMed] [Google Scholar]
  14. Ewing C., Allan W., Daly K., Hou S., Cole G. A., Doherty P. C., Blackman M. A. Virus-specific CD8+ T-cell responses in mice transgenic for a T-cell receptor beta chain selected at random. J Virol. 1994 May;68(5):3065–3070. doi: 10.1128/jvi.68.5.3065-3070.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gooding L. R. Specificities of killing by T lymphocytes generated against syngeneic SV40 transformants: studies employing recombinants within the H-2 complex. J Immunol. 1979 Mar;122(3):1002–1008. [PubMed] [Google Scholar]
  16. Gould K. G., Scotney H., Brownlee G. G. Characterization of two distinct major histocompatibility complex class I Kk-restricted T-cell epitopes within the influenza A/PR/8/34 virus hemagglutinin. J Virol. 1991 Oct;65(10):5401–5409. doi: 10.1128/jvi.65.10.5401-5409.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Heath W. R., Miller J. F. Expression of two alpha chains on the surface of T cells in T cell receptor transgenic mice. J Exp Med. 1993 Nov 1;178(5):1807–1811. doi: 10.1084/jem.178.5.1807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Janeway C. A., Jr Selective elements for the V beta region of the T cell receptor: Mls and the bacterial toxic mitogens. Adv Immunol. 1991;50:1–53. doi: 10.1016/s0065-2776(08)60821-4. [DOI] [PubMed] [Google Scholar]
  19. Kappler J. W., Skidmore B., White J., Marrack P. Antigen-inducible, H-2-restricted, interleukin-2-producing T cell hybridomas. Lack of independent antigen and H-2 recognition. J Exp Med. 1981 May 1;153(5):1198–1214. doi: 10.1084/jem.153.5.1198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kilbourne E. D. Future influenza vaccines and the use of genetic recombinants. Bull World Health Organ. 1969;41(3):643–645. [PMC free article] [PubMed] [Google Scholar]
  21. Koop B. F., Rowen L., Wang K., Kuo C. L., Seto D., Lenstra J. A., Howard S., Shan W., Deshpande P., Hood L. The human T-cell receptor TCRAC/TCRDC (C alpha/C delta) region: organization, sequence, and evolution of 97.6 kb of DNA. Genomics. 1994 Feb;19(3):478–493. doi: 10.1006/geno.1994.1097. [DOI] [PubMed] [Google Scholar]
  22. Kotzin B. L., Barr V. L., Palmer E. A large deletion within the T-cell receptor beta-chain gene complex in New Zealand white mice. Science. 1985 Jul 12;229(4709):167–171. doi: 10.1126/science.2990044. [DOI] [PubMed] [Google Scholar]
  23. Kumar V., Sercarz E. Holes in the T cell repertoire to myelin basic protein owing to the absence of the D beta 2-J beta 2 gene cluster: implications for T cell receptor recognition and autoimmunity. J Exp Med. 1994 May 1;179(5):1637–1643. doi: 10.1084/jem.179.5.1637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Malissen M., Trucy J., Jouvin-Marche E., Cazenave P. A., Scollay R., Malissen B. Regulation of TCR alpha and beta gene allelic exclusion during T-cell development. Immunol Today. 1992 Aug;13(8):315–322. doi: 10.1016/0167-5699(92)90044-8. [DOI] [PubMed] [Google Scholar]
  25. Nanda N. K., Apple R., Sercarz E. Limitations in plasticity of the T-cell receptor repertoire. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9503–9507. doi: 10.1073/pnas.88.21.9503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Oukka M., Riché N., Kosmatopoulos K. A nonimmunodominant nucleoprotein-derived peptide is presented by influenza A virus-infected H-2b cells. J Immunol. 1994 May 15;152(10):4843–4851. [PubMed] [Google Scholar]
  27. Padovan E., Casorati G., Dellabona P., Meyer S., Brockhaus M., Lanzavecchia A. Expression of two T cell receptor alpha chains: dual receptor T cells. Science. 1993 Oct 15;262(5132):422–424. doi: 10.1126/science.8211163. [DOI] [PubMed] [Google Scholar]
  28. Pala P., Askonas B. A. Low responder MHC alleles for Tc recognition of influenza nucleoprotein. Immunogenetics. 1986;23(6):379–384. doi: 10.1007/BF00372670. [DOI] [PubMed] [Google Scholar]
  29. Perkins D. L., Wang Y. S., Fruman D., Seidman J. G., Rimm I. J. Immunodominance is altered in T cell receptor (beta-chain) transgenic mice without the generation of a hole in the repertoire. J Immunol. 1991 May 1;146(9):2960–2964. [PubMed] [Google Scholar]
  30. Petrie H. T., Livak F., Schatz D. G., Strasser A., Crispe I. N., Shortman K. Multiple rearrangements in T cell receptor alpha chain genes maximize the production of useful thymocytes. J Exp Med. 1993 Aug 1;178(2):615–622. doi: 10.1084/jem.178.2.615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Pullen A. M., Kappler J. W., Marrack P. Tolerance to self antigens shapes the T-cell repertoire. Immunol Rev. 1989 Feb;107:125–139. doi: 10.1111/j.1600-065x.1989.tb00006.x. [DOI] [PubMed] [Google Scholar]
  32. Pullen A. M., Potts W., Wakeland E. K., Kappler J., Marrack P. Surprisingly uneven distribution of the T cell receptor V beta repertoire in wild mice. J Exp Med. 1990 Jan 1;171(1):49–62. doi: 10.1084/jem.171.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Schaeffer E. B., Sette A., Johnson D. L., Bekoff M. C., Smith J. A., Grey H. M., Buus S. Relative contribution of "determinant selection" and "holes in the T-cell repertoire" to T-cell responses. Proc Natl Acad Sci U S A. 1989 Jun;86(12):4649–4653. doi: 10.1073/pnas.86.12.4649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sercarz E. E., Lehmann P. V., Ametani A., Benichou G., Miller A., Moudgil K. Dominance and crypticity of T cell antigenic determinants. Annu Rev Immunol. 1993;11:729–766. doi: 10.1146/annurev.iy.11.040193.003501. [DOI] [PubMed] [Google Scholar]
  36. Singer P. A., McEvilly R. J., Balderas R. S., Dixon F. J., Theofilopoulos A. N. T-cell receptor alpha-chain variable-region haplotypes of normal and autoimmune laboratory mouse strains. Proc Natl Acad Sci U S A. 1988 Oct;85(20):7729–7733. doi: 10.1073/pnas.85.20.7729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Smith G. L., Levin J. Z., Palese P., Moss B. Synthesis and cellular location of the ten influenza polypeptides individually expressed by recombinant vaccinia viruses. Virology. 1987 Oct;160(2):336–345. doi: 10.1016/0042-6822(87)90004-3. [DOI] [PubMed] [Google Scholar]
  38. Smith H. P., Le P., Woodland D. L., Blackman M. A. T cell receptor alpha-chain influences reactivity to Mls-1 in V beta 8.1 transgenic mice. J Immunol. 1992 Aug 1;149(3):887–896. [PubMed] [Google Scholar]
  39. Surman S., Deckhut A. M., Blackman M. A., Woodland D. L. MHC-specific recognition of a bacterial superantigen by weakly reactive T cells. J Immunol. 1994 May 15;152(10):4893–4902. [PubMed] [Google Scholar]
  40. Taylor P. M., Davey J., Howland K., Rothbard J. B., Askonas B. A. Class I MHC molecules rather than other mouse genes dictate influenza epitope recognition by cytotoxic T cells. Immunogenetics. 1987;26(4-5):267–272. doi: 10.1007/BF00346521. [DOI] [PubMed] [Google Scholar]
  41. White J., Blackman M., Bill J., Kappler J., Marrack P., Gold D. P., Born W. Two better cell lines for making hybridomas expressing specific T cell receptors. J Immunol. 1989 Sep 15;143(6):1822–1825. [PubMed] [Google Scholar]
  42. Woodland D. L., Kotzin B. L., Palmer E. Functional consequences of a T cell receptor D beta 2 and J beta 2 gene segment deletion. J Immunol. 1990 Jan 1;144(1):379–385. [PubMed] [Google Scholar]
  43. Woodland D., Happ M. P., Bill J., Palmer E. Requirement for cotolerogenic gene products in the clonal deletion of I-E reactive T cells. Science. 1990 Feb 23;247(4945):964–967. doi: 10.1126/science.1968289. [DOI] [PubMed] [Google Scholar]
  44. Yewdell J. W., Bennink J. R. The binary logic of antigen processing and presentation to T cells. Cell. 1990 Jul 27;62(2):203–206. doi: 10.1016/0092-8674(90)90356-j. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES