Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1995 Dec;69(12):7743–7753. doi: 10.1128/jvi.69.12.7743-7753.1995

Human papillomavirus type 16 variant lineages in United States populations characterized by nucleotide sequence analysis of the E6, L2, and L1 coding segments.

T Yamada 1, C M Wheeler 1, A L Halpern 1, A C Stewart 1, A Hildesheim 1, S A Jenison 1
PMCID: PMC189716  PMID: 7494284

Abstract

Human papillomavirus type 16 (HPV16) nucleotide sequence variations in the E6 (nucleotide positions [nt] 104 to 559), L2 (nt 4272 to 5657), and L1 (nt 5665 to 7148) open reading frames (ORFs), and the long control region (nt 7479 to 7842), were examined in 29 selected United States isolates. Of 3,690 nucleotide positions, 129 (3.5%) varied. The maximum pairwise distance was 66 nucleotide differences, or 1.8%. Nucleotide variations within different genome segments were phylogenetically compatible, and nucleotide changes within E6, L2, and L1 contained phylogenetic information beyond that provided in the long control region. Most isolates were classified as members of HPV16 lineages that have been described previously. However, two novel phylogenetic branches were identified. The L2 ORF was the most variable coding segment. L2 synonymous and nonsynonymous nucleotide changes were distributed asymmetrically. The amino-terminal half of the L2 protein was remarkably conserved among all isolates, suggesting that the region is under evolutionary constraint. The amino-terminal region of the E6 ORF was relatively varied, especially at E6 amino acid positions 10 and 14. Several amino acid difference in the L1 ORF were observed between lineages. Forty-nine amino acid variations across all sequenced coding regions were observed. These amino acid differences may be relevant to differences in the generation of humoral or cell-mediated immune responses to HPV16 variants. Our data form a basis for considering HPV16 sequence variation in the rational design of vaccine strategies and as an epidemiologic correlate of cervical cancer risk.

Full Text

The Full Text of this article is available as a PDF (308.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Androphy E. J., Hubbert N. L., Schiller J. T., Lowy D. R. Identification of the HPV-16 E6 protein from transformed mouse cells and human cervical carcinoma cell lines. EMBO J. 1987 Apr;6(4):989–992. doi: 10.1002/j.1460-2075.1987.tb04849.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barnes W. M. PCR amplification of up to 35-kb DNA with high fidelity and high yield from lambda bacteriophage templates. Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):2216–2220. doi: 10.1073/pnas.91.6.2216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bartholomew J. S., Stacey S. N., Coles B., Burt D. J., Arrand J. R., Stern P. L. Identification of a naturally processed HLA A0201-restricted viral peptide from cells expressing human papillomavirus type 16 E6 oncoprotein. Eur J Immunol. 1994 Dec;24(12):3175–3179. doi: 10.1002/eji.1830241239. [DOI] [PubMed] [Google Scholar]
  4. Bavin P. J., Walker P. G., Emery V. C. Sequence microheterogeneity in the long control region of clinical isolates of human papillomavirus type 16. J Med Virol. 1993 Apr;39(4):267–272. doi: 10.1002/jmv.1890390402. [DOI] [PubMed] [Google Scholar]
  5. Becker T. M., Wheeler C. M., McGough N. S., Parmenter C. A., Jordan S. W., Stidley C. A., McPherson R. S., Dorin M. H. Sexually transmitted diseases and other risk factors for cervical dysplasia among southwestern Hispanic and non-Hispanic white women. JAMA. 1994 Apr 20;271(15):1181–1188. [PubMed] [Google Scholar]
  6. Bernard H. U., Chan S. Y., Manos M. M., Ong C. K., Villa L. L., Delius H., Peyton C. L., Bauer H. M., Wheeler C. M. Identification and assessment of known and novel human papillomaviruses by polymerase chain reaction amplification, restriction fragment length polymorphisms, nucleotide sequence, and phylogenetic algorithms. J Infect Dis. 1994 Nov;170(5):1077–1085. doi: 10.1093/infdis/170.5.1077. [DOI] [PubMed] [Google Scholar]
  7. Bosch F. X., Manos M. M., Muñoz N., Sherman M., Jansen A. M., Peto J., Schiffman M. H., Moreno V., Kurman R., Shah K. V. Prevalence of human papillomavirus in cervical cancer: a worldwide perspective. International biological study on cervical cancer (IBSCC) Study Group. J Natl Cancer Inst. 1995 Jun 7;87(11):796–802. doi: 10.1093/jnci/87.11.796. [DOI] [PubMed] [Google Scholar]
  8. Bubb V., McCance D. J., Schlegel R. DNA sequence of the HPV-16 E5 ORF and the structural conservation of its encoded protein. Virology. 1988 Mar;163(1):243–246. doi: 10.1016/0042-6822(88)90259-0. [DOI] [PubMed] [Google Scholar]
  9. Chan S. Y., Delius H., Halpern A. L., Bernard H. U. Analysis of genomic sequences of 95 papillomavirus types: uniting typing, phylogeny, and taxonomy. J Virol. 1995 May;69(5):3074–3083. doi: 10.1128/jvi.69.5.3074-3083.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chan S. Y., Ho L., Ong C. K., Chow V., Drescher B., Dürst M., ter Meulen J., Villa L., Luande J., Mgaya H. N. Molecular variants of human papillomavirus type 16 from four continents suggest ancient pandemic spread of the virus and its coevolution with humankind. J Virol. 1992 Apr;66(4):2057–2066. doi: 10.1128/jvi.66.4.2057-2066.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Chandrachud L. M., Grindlay G. J., McGarvie G. M., O'Neil B. W., Wagner E. R., Jarrett W. F., Campo M. S. Vaccination of cattle with the N-terminus of L2 is necessary and sufficient for preventing infection by bovine papillomavirus-4. Virology. 1995 Aug 1;211(1):204–208. doi: 10.1006/viro.1995.1392. [DOI] [PubMed] [Google Scholar]
  12. Chen J. J., Reid C. E., Band V., Androphy E. J. Interaction of papillomavirus E6 oncoproteins with a putative calcium-binding protein. Science. 1995 Jul 28;269(5223):529–531. doi: 10.1126/science.7624774. [DOI] [PubMed] [Google Scholar]
  13. Cheng S., Fockler C., Barnes W. M., Higuchi R. Effective amplification of long targets from cloned inserts and human genomic DNA. Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5695–5699. doi: 10.1073/pnas.91.12.5695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Chou Q., Russell M., Birch D. E., Raymond J., Bloch W. Prevention of pre-PCR mis-priming and primer dimerization improves low-copy-number amplifications. Nucleic Acids Res. 1992 Apr 11;20(7):1717–1723. doi: 10.1093/nar/20.7.1717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Christensen N. D., Kreider J. W., Kan N. C., DiAngelo S. L. The open reading frame L2 of cottontail rabbit papillomavirus contains antibody-inducing neutralizing epitopes. Virology. 1991 Apr;181(2):572–579. doi: 10.1016/0042-6822(91)90890-n. [DOI] [PubMed] [Google Scholar]
  16. Crook T., Tidy J. A., Vousden K. H. Degradation of p53 can be targeted by HPV E6 sequences distinct from those required for p53 binding and trans-activation. Cell. 1991 Nov 1;67(3):547–556. doi: 10.1016/0092-8674(91)90529-8. [DOI] [PubMed] [Google Scholar]
  17. Dillner J., Wiklund F., Lenner P., Eklund C., Frederiksson-Shanazarian V., Schiller J. T., Hibma M., Hallmans G., Stendahl U. Antibodies against linear and conformational epitopes of human papillomavirus type 16 that independently associate with incident cervical cancer. Int J Cancer. 1995 Jan 27;60(3):377–382. doi: 10.1002/ijc.2910600318. [DOI] [PubMed] [Google Scholar]
  18. Ellis J. R., Keating P. J., Baird J., Hounsell E. F., Renouf D. V., Rowe M., Hopkins D., Duggan-Keen M. F., Bartholomew J. S., Young L. S. The association of an HPV16 oncogene variant with HLA-B7 has implications for vaccine design in cervical cancer. Nat Med. 1995 May;1(5):464–470. doi: 10.1038/nm0595-464. [DOI] [PubMed] [Google Scholar]
  19. Eschle D., Dürst M., ter Meulen J., Luande J., Eberhardt H. C., Pawlita M., Gissmann L. Geographical dependence of sequence variation in the E7 gene of human papillomavirus type 16. J Gen Virol. 1992 Jul;73(Pt 7):1829–1832. doi: 10.1099/0022-1317-73-7-1829. [DOI] [PubMed] [Google Scholar]
  20. Fujinaga Y., Okazawa K., Nishikawa A., Yamakawa Y., Fukushima M., Kato I., Fujinaga K. Sequence variation of human papillomavirus type 16 E7 in preinvasive and invasive cervical neoplasias. Virus Genes. 1994 Sep;9(1):85–92. doi: 10.1007/BF01703438. [DOI] [PubMed] [Google Scholar]
  21. Hagensee M. E., Yaegashi N., Galloway D. A. Self-assembly of human papillomavirus type 1 capsids by expression of the L1 protein alone or by coexpression of the L1 and L2 capsid proteins. J Virol. 1993 Jan;67(1):315–322. doi: 10.1128/jvi.67.1.315-322.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Halbert C. L., Galloway D. A. Identification of the E5 open reading frame of human papillomavirus type 16. J Virol. 1988 Mar;62(3):1071–1075. doi: 10.1128/jvi.62.3.1071-1075.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Haltiner M., Kempe T., Tjian R. A novel strategy for constructing clustered point mutations. Nucleic Acids Res. 1985 Feb 11;13(3):1015–1025. doi: 10.1093/nar/13.3.1015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Hattori M., Sakaki Y. Dideoxy sequencing method using denatured plasmid templates. Anal Biochem. 1986 Feb 1;152(2):232–238. doi: 10.1016/0003-2697(86)90403-3. [DOI] [PubMed] [Google Scholar]
  25. Ho L., Chan S. Y., Burk R. D., Das B. C., Fujinaga K., Icenogle J. P., Kahn T., Kiviat N., Lancaster W., Mavromara-Nazos P. The genetic drift of human papillomavirus type 16 is a means of reconstructing prehistoric viral spread and the movement of ancient human populations. J Virol. 1993 Nov;67(11):6413–6423. doi: 10.1128/jvi.67.11.6413-6423.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ho L., Chan S. Y., Chow V., Chong T., Tay S. K., Villa L. L., Bernard H. U. Sequence variants of human papillomavirus type 16 in clinical samples permit verification and extension of epidemiological studies and construction of a phylogenetic tree. J Clin Microbiol. 1991 Sep;29(9):1765–1772. doi: 10.1128/jcm.29.9.1765-1772.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Icenogle J. P., Laga M., Miller D., Manoka A. T., Tucker R. A., Reeves W. C. Genotypes and sequence variants of human papillomavirus DNAs from human immunodeficiency virus type 1-infected women with cervical intraepithelial neoplasia. J Infect Dis. 1992 Dec;166(6):1210–1216. doi: 10.1093/infdis/166.6.1210. [DOI] [PubMed] [Google Scholar]
  28. Icenogle J. P., Sathya P., Miller D. L., Tucker R. A., Rawls W. E. Nucleotide and amino acid sequence variation in the L1 and E7 open reading frames of human papillomavirus type 6 and type 16. Virology. 1991 Sep;184(1):101–107. doi: 10.1016/0042-6822(91)90826-w. [DOI] [PubMed] [Google Scholar]
  29. Jenison S. A., Yu X. P., Valentine J. M., Galloway D. A. Characterization of human antibody-reactive epitopes encoded by human papillomavirus types 16 and 18. J Virol. 1991 Mar;65(3):1208–1218. doi: 10.1128/jvi.65.3.1208-1218.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Kirnbauer R., Booy F., Cheng N., Lowy D. R., Schiller J. T. Papillomavirus L1 major capsid protein self-assembles into virus-like particles that are highly immunogenic. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):12180–12184. doi: 10.1073/pnas.89.24.12180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Kirnbauer R., Hubbert N. L., Wheeler C. M., Becker T. M., Lowy D. R., Schiller J. T. A virus-like particle enzyme-linked immunosorbent assay detects serum antibodies in a majority of women infected with human papillomavirus type 16. J Natl Cancer Inst. 1994 Apr 6;86(7):494–499. doi: 10.1093/jnci/86.7.494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Kirnbauer R., Taub J., Greenstone H., Roden R., Dürst M., Gissmann L., Lowy D. R., Schiller J. T. Efficient self-assembly of human papillomavirus type 16 L1 and L1-L2 into virus-like particles. J Virol. 1993 Dec;67(12):6929–6936. doi: 10.1128/jvi.67.12.6929-6936.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Korber B. T., MacInnes K., Smith R. F., Myers G. Mutational trends in V3 loop protein sequences observed in different genetic lineages of human immunodeficiency virus type 1. J Virol. 1994 Oct;68(10):6730–6744. doi: 10.1128/jvi.68.10.6730-6744.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Köchel H. G., Monazahian M., Sievert K., Höhne M., Thomssen C., Teichmann A., Arendt P., Thomssen R. Occurrence of antibodies to L1, L2, E4 and E7 gene products of human papillomavirus types 6b, 16 and 18 among cervical cancer patients and controls. Int J Cancer. 1991 Jul 9;48(5):682–688. doi: 10.1002/ijc.2910480509. [DOI] [PubMed] [Google Scholar]
  35. Lin Y. L., Borenstein L. A., Selvakumar R., Ahmed R., Wettstein F. O. Effective vaccination against papilloma development by immunization with L1 or L2 structural protein of cottontail rabbit papillomavirus. Virology. 1992 Apr;187(2):612–619. doi: 10.1016/0042-6822(92)90463-y. [DOI] [PubMed] [Google Scholar]
  36. Lowy D. R., Kirnbauer R., Schiller J. T. Genital human papillomavirus infection. Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2436–2440. doi: 10.1073/pnas.91.7.2436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Münger K., Phelps W. C., Bubb V., Howley P. M., Schlegel R. The E6 and E7 genes of the human papillomavirus type 16 together are necessary and sufficient for transformation of primary human keratinocytes. J Virol. 1989 Oct;63(10):4417–4421. doi: 10.1128/jvi.63.10.4417-4421.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Münger K., Scheffner M., Huibregtse J. M., Howley P. M. Interactions of HPV E6 and E7 oncoproteins with tumour suppressor gene products. Cancer Surv. 1992;12:197–217. [PubMed] [Google Scholar]
  39. Nei M., Gojobori T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol. 1986 Sep;3(5):418–426. doi: 10.1093/oxfordjournals.molbev.a040410. [DOI] [PubMed] [Google Scholar]
  40. Ohler L. D., Rose E. A. Optimization of long-distance PCR using a transposon-based model system. PCR Methods Appl. 1992 Aug;2(1):51–59. doi: 10.1101/gr.2.1.51. [DOI] [PubMed] [Google Scholar]
  41. Olsen G. J., Matsuda H., Hagstrom R., Overbeek R. fastDNAmL: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. Comput Appl Biosci. 1994 Feb;10(1):41–48. doi: 10.1093/bioinformatics/10.1.41. [DOI] [PubMed] [Google Scholar]
  42. Parton A. Nucleotide sequence of the HPV16 L1 open reading frame. Nucleic Acids Res. 1990 Jun 25;18(12):3631–3631. doi: 10.1093/nar/18.12.3631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Pirisi L., Yasumoto S., Feller M., Doniger J., DiPaolo J. A. Transformation of human fibroblasts and keratinocytes with human papillomavirus type 16 DNA. J Virol. 1987 Apr;61(4):1061–1066. doi: 10.1128/jvi.61.4.1061-1066.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Pushko P., Sasagawa T., Cuzick J., Crawford L. Sequence variation in the capsid protein genes of human papillomavirus type 16. J Gen Virol. 1994 Apr;75(Pt 4):911–916. doi: 10.1099/0022-1317-75-4-911. [DOI] [PubMed] [Google Scholar]
  45. Roden R. B., Kirnbauer R., Jenson A. B., Lowy D. R., Schiller J. T. Interaction of papillomaviruses with the cell surface. J Virol. 1994 Nov;68(11):7260–7266. doi: 10.1128/jvi.68.11.7260-7266.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Roden R. B., Weissinger E. M., Henderson D. W., Booy F., Kirnbauer R., Mushinski J. F., Lowy D. R., Schiller J. T. Neutralization of bovine papillomavirus by antibodies to L1 and L2 capsid proteins. J Virol. 1994 Nov;68(11):7570–7574. doi: 10.1128/jvi.68.11.7570-7574.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Rose R. C., Reichman R. C., Bonnez W. Human papillomavirus (HPV) type 11 recombinant virus-like particles induce the formation of neutralizing antibodies and detect HPV-specific antibodies in human sera. J Gen Virol. 1994 Aug;75(Pt 8):2075–2079. doi: 10.1099/0022-1317-75-8-2075. [DOI] [PubMed] [Google Scholar]
  48. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Scheffner M., Werness B. A., Huibregtse J. M., Levine A. J., Howley P. M. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell. 1990 Dec 21;63(6):1129–1136. doi: 10.1016/0092-8674(90)90409-8. [DOI] [PubMed] [Google Scholar]
  50. Schiffman M. H., Bauer H. M., Hoover R. N., Glass A. G., Cadell D. M., Rush B. B., Scott D. R., Sherman M. E., Kurman R. J., Wacholder S. Epidemiologic evidence showing that human papillomavirus infection causes most cervical intraepithelial neoplasia. J Natl Cancer Inst. 1993 Jun 16;85(12):958–964. doi: 10.1093/jnci/85.12.958. [DOI] [PubMed] [Google Scholar]
  51. Schneider-Gädicke A., Schwarz E. Different human cervical carcinoma cell lines show similar transcription patterns of human papillomavirus type 18 early genes. EMBO J. 1986 Sep;5(9):2285–2292. doi: 10.1002/j.1460-2075.1986.tb04496.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Seedorf K., Krämmer G., Dürst M., Suhai S., Röwekamp W. G. Human papillomavirus type 16 DNA sequence. Virology. 1985 Aug;145(1):181–185. doi: 10.1016/0042-6822(85)90214-4. [DOI] [PubMed] [Google Scholar]
  53. Smits H. L., Traanberg K. F., Krul M. R., Prussia P. R., Kuiken C. L., Jebbink M. F., Kleyne J. A., van den Berg R. H., Capone B., de Bruyn A. Identification of a unique group of human papillomavirus type 16 sequence variants among clinical isolates from Barbados. J Gen Virol. 1994 Sep;75(Pt 9):2457–2462. doi: 10.1099/0022-1317-75-9-2457. [DOI] [PubMed] [Google Scholar]
  54. Smotkin D., Wettstein F. O. Transcription of human papillomavirus type 16 early genes in a cervical cancer and a cancer-derived cell line and identification of the E7 protein. Proc Natl Acad Sci U S A. 1986 Jul;83(13):4680–4684. doi: 10.1073/pnas.83.13.4680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Stacey S. N., Eklund C., Jordan D., Smith N. K., Stern P. L., Dillner J., Arrand J. R. Scanning the structure and antigenicity of HPV-16 E6 and E7 oncoproteins using antipeptide antibodies. Oncogene. 1994 Feb;9(2):635–645. [PubMed] [Google Scholar]
  56. Stewart A. C., Gravitt P. E., Cheng S., Wheeler C. M. Generation of entire human papillomavirus genomes by long PCR: frequency of errors produced during amplification. Genome Res. 1995 Aug;5(1):79–88. doi: 10.1101/gr.5.1.79. [DOI] [PubMed] [Google Scholar]
  57. Viscidi R. P., Sun Y., Tsuzaki B., Bosch F. X., Muñoz N., Shah K. V. Serologic response in human papillomavirus-associated invasive cervical cancer. Int J Cancer. 1993 Nov 11;55(5):780–784. doi: 10.1002/ijc.2910550515. [DOI] [PubMed] [Google Scholar]
  58. Wheeler C. M., Parmenter C. A., Hunt W. C., Becker T. M., Greer C. E., Hildesheim A., Manos M. M. Determinants of genital human papillomavirus infection among cytologically normal women attending the University of New Mexico student health center. Sex Transm Dis. 1993 Sep-Oct;20(5):286–289. doi: 10.1097/00007435-199309000-00009. [DOI] [PubMed] [Google Scholar]
  59. Wikström A., Eklund C., Von Krogh G., Lidbrink P., Dillner J. Levels of immunoglobulin G antibodies against defined epitopes of the L1 and L2 capsid proteins of human papillomavirus type 6 are elevated in men with a history of condylomata acuminata. J Clin Microbiol. 1992 Jul;30(7):1795–1800. doi: 10.1128/jcm.30.7.1795-1800.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Xi S. Z., Banks L. M. Baculovirus expression of the human papillomavirus type 16 capsid proteins: detection of L1-L2 protein complexes. J Gen Virol. 1991 Dec;72(Pt 12):2981–2988. doi: 10.1099/0022-1317-72-12-2981. [DOI] [PubMed] [Google Scholar]
  61. Yaegashi N., Jenison S. A., Batra M., Galloway D. A. Human antibodies recognize multiple distinct type-specific and cross-reactive regions of the minor capsid proteins of human papillomavirus types 6 and 11. J Virol. 1992 Apr;66(4):2008–2019. doi: 10.1128/jvi.66.4.2008-2019.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Yaegashi N., Jenison S. A., Valentine J. M., Dunn M., Taichman L. B., Baker D. A., Galloway D. A. Characterization of murine polyclonal antisera and monoclonal antibodies generated against intact and denatured human papillomavirus type 1 virions. J Virol. 1991 Mar;65(3):1578–1583. doi: 10.1128/jvi.65.3.1578-1583.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Yaegashi N., Xi L., Batra M., Galloway D. A. Sequence and antigenic diversity in two immunodominant regions of the L2 protein of human papillomavirus types 6 and 16. J Infect Dis. 1993 Sep;168(3):743–747. doi: 10.1093/infdis/168.3.743. [DOI] [PubMed] [Google Scholar]
  64. Zhou J., Sun X. Y., Stenzel D. J., Frazer I. H. Expression of vaccinia recombinant HPV 16 L1 and L2 ORF proteins in epithelial cells is sufficient for assembly of HPV virion-like particles. Virology. 1991 Nov;185(1):251–257. doi: 10.1016/0042-6822(91)90772-4. [DOI] [PubMed] [Google Scholar]
  65. de Villiers E. M. Heterogeneity of the human papillomavirus group. J Virol. 1989 Nov;63(11):4898–4903. doi: 10.1128/jvi.63.11.4898-4903.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. zur Hausen H. Viruses in human cancers. Science. 1991 Nov 22;254(5035):1167–1173. doi: 10.1126/science.1659743. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES