Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1995 Dec;69(12):8011–8019. doi: 10.1128/jvi.69.12.8011-8019.1995

5' Coding and regulatory region sequence divergence with conserved function of the Epstein-Barr virus LMP2A homolog in herpesvirus papio.

M Franken 1, B Annis 1, A N Ali 1, F Wang 1
PMCID: PMC189746  PMID: 7494314

Abstract

B-lymphotropic herpesviruses naturally infecting Old World primates share biologic, epidemiologic, pathogenic, and molecular features with the human pathogen Epstein-Barr virus (EBV). These related gammaherpesviruses have colinear genomes with considerable nucleotide homology. The replicative cycle genes share a high degree of homology across species, whereas the transformation-associated EBV latent genes appear to be much more divergent. For example, the EBV BamHI Nhet fragment, which encodes all or part of the EBV latent infection membrane proteins, cross-hybridizes poorly to DNA from nonhuman primate B-lymphotropic herpesviruses. A viral DNA fragment corresponding to this region of the EBV genome was isolated from the baboon B-lymphotropic herpesvirus, herpesvirus papio, and used to clone a herpesvirus papio cDNA corresponding to EBV LMP2A. At least three tyrosine kinase interaction motifs are conserved despite significant amino acid divergence of the herpesvirus papio LMP2A first exon from the EBV homolog. Functionally, the herpesvirus papio LMP2A is tyrosine phosphorylated and induces tyrosine phosphorylation of cell proteins similar to EBV LMP2A. The 12 hydrophobic LMP2 transmembrane domains are well conserved. Two CBP (Jk) binding sites important for EBNA-2-induced transactivation of the LMP2A promoter are also present in the herpesvirus papio LMP2A promoter, and the simian LMP2A promoter is also responsive to EBV EBNA-2-induced transactivation in human B cells. Thus, transcriptional regulation, splicing, kinase interaction sites, and tyrosine phosphorylation of the LMP2A homologs have been conserved despite significant sequences heterogeneity in the preterminal repeat regions of these human and nonhuman primate EBVs. The conservation of the LMP2 gene, despite its apparent nonessential role for in vitro EBV infection, suggests an important role for LMP2A in vivo. The similarities between these human and simian B-lymphotropic herpesviruses, and the LMP2 genes in particular, suggest that the function of LMP2 in vivo could be addressed by using recombinant LMP2A-mutant simian viruses and experimental infection of Old World primates.

Full Text

The Full Text of this article is available as a PDF (591.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ablashi D. V., Gerber P., Easton J. Oncogenic herpesviruses of nonhuman primates. Comp Immunol Microbiol Infect Dis. 1979;2(2-3):229–241. doi: 10.1016/0147-9571(79)90011-0. [DOI] [PubMed] [Google Scholar]
  2. Arrand J. R., Young L. S., Tugwood J. D. Two families of sequences in the small RNA-encoding region of Epstein-Barr virus (EBV) correlate with EBV types A and B. J Virol. 1989 Feb;63(2):983–986. doi: 10.1128/jvi.63.2.983-986.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beaufils P., Choquet D., Mamoun R. Z., Malissen B. The (YXXL/I)2 signalling motif found in the cytoplasmic segments of the bovine leukaemia virus envelope protein and Epstein-Barr virus latent membrane protein 2A can elicit early and late lymphocyte activation events. EMBO J. 1993 Dec 15;12(13):5105–5112. doi: 10.1002/j.1460-2075.1993.tb06205.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brooks L., Yao Q. Y., Rickinson A. B., Young L. S. Epstein-Barr virus latent gene transcription in nasopharyngeal carcinoma cells: coexpression of EBNA1, LMP1, and LMP2 transcripts. J Virol. 1992 May;66(5):2689–2697. doi: 10.1128/jvi.66.5.2689-2697.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Burkhardt A. L., Bolen J. B., Kieff E., Longnecker R. An Epstein-Barr virus transformation-associated membrane protein interacts with src family tyrosine kinases. J Virol. 1992 Aug;66(8):5161–5167. doi: 10.1128/jvi.66.8.5161-5167.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Busson P., Edwards R. H., Tursz T., Raab-Traub N. Sequence polymorphism in the Epstein-Barr virus latent membrane protein (LMP)-2 gene. J Gen Virol. 1995 Jan;76(Pt 1):139–145. doi: 10.1099/0022-1317-76-1-139. [DOI] [PubMed] [Google Scholar]
  7. Busson P., McCoy R., Sadler R., Gilligan K., Tursz T., Raab-Traub N. Consistent transcription of the Epstein-Barr virus LMP2 gene in nasopharyngeal carcinoma. J Virol. 1992 May;66(5):3257–3262. doi: 10.1128/jvi.66.5.3257-3262.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Countryman J., Jenson H., Seibl R., Wolf H., Miller G. Polymorphic proteins encoded within BZLF1 of defective and standard Epstein-Barr viruses disrupt latency. J Virol. 1987 Dec;61(12):3672–3679. doi: 10.1128/jvi.61.12.3672-3679.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. DeFranco A. L. Structure and function of the B cell antigen receptor. Annu Rev Cell Biol. 1993;9:377–410. doi: 10.1146/annurev.cb.09.110193.002113. [DOI] [PubMed] [Google Scholar]
  10. Dillner J., Rabin H., Letvin N., Henle W., Henle G., Klein G. Nuclear DNA-binding proteins determined by the Epstein-Barr virus-related simian lymphotropic herpesviruses H. gorilla, H. pan, H. pongo and H. papio. J Gen Virol. 1987 Jun;68(Pt 6):1587–1596. doi: 10.1099/0022-1317-68-6-1587. [DOI] [PubMed] [Google Scholar]
  11. Dunkel V. C., Pry T. W., Henle G., Henle W. Immunofluorescence tests for antibodies to Epstein-Barr virus with sera of lower primates. J Natl Cancer Inst. 1972 Aug;49(2):435–440. [PubMed] [Google Scholar]
  12. Falk L., Deinhardt F., Nonoyama M., Wolfe L. G., Bergholz C. Properties of a baboon lymphotropic herpesvirus related to Epstein-Barr virus. Int J Cancer. 1976 Dec 15;18(6):798–807. doi: 10.1002/ijc.2910180611. [DOI] [PubMed] [Google Scholar]
  13. Falk L., Wolfe L., Deinhardt F., Paciga J., Dombos L., Klein G., Henle W., Henle G. Epstein-Barr virus: transformation of non-human primate lymphocytes in vitro. Int J Cancer. 1974 Mar 15;13(3):363–376. doi: 10.1002/ijc.2910130312. [DOI] [PubMed] [Google Scholar]
  14. Feichtinger H., Putkonen P., Parravicini C., Li S. L., Kaaya E. E., Böttiger D., Biberfeld G., Biberfeld P. Malignant lymphomas in cynomolgus monkeys infected with simian immunodeficiency virus. Am J Pathol. 1990 Dec;137(6):1311–1315. [PMC free article] [PubMed] [Google Scholar]
  15. Frank A., Andiman W. A., Miller G. Epstein-Barr virus and nonhuman primates: natural and experimental infection. Adv Cancer Res. 1976;23:171–201. doi: 10.1016/s0065-230x(08)60546-1. [DOI] [PubMed] [Google Scholar]
  16. Gardella T., Medveczky P., Sairenji T., Mulder C. Detection of circular and linear herpesvirus DNA molecules in mammalian cells by gel electrophoresis. J Virol. 1984 Apr;50(1):248–254. doi: 10.1128/jvi.50.1.248-254.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gerber P., Branch J. W., Rosenblum E. N. Attempts to transmit infectious mononucleosis to rhesus monkeys and marmosets and to isolate herpes-like virus. Proc Soc Exp Biol Med. 1969 Jan;130(1):14–19. doi: 10.3181/00379727-130-33478. [DOI] [PubMed] [Google Scholar]
  18. Goldberg R. J., Scolnick E. M., Parks W. P., Yakovleva L. A., Lapin B. A. Isolation of a primate type-C virus from a lymphomatous baboon. Int J Cancer. 1974 Dec 15;14(6):722–730. doi: 10.1002/ijc.2910140605. [DOI] [PubMed] [Google Scholar]
  19. Grossman S. R., Johannsen E., Tong X., Yalamanchili R., Kieff E. The Epstein-Barr virus nuclear antigen 2 transactivator is directed to response elements by the J kappa recombination signal binding protein. Proc Natl Acad Sci U S A. 1994 Aug 2;91(16):7568–7572. doi: 10.1073/pnas.91.16.7568. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hatfull G., Bankier A. T., Barrell B. G., Farrell P. J. Sequence analysis of Raji Epstein-Barr virus DNA. Virology. 1988 Jun;164(2):334–340. doi: 10.1016/0042-6822(88)90546-6. [DOI] [PubMed] [Google Scholar]
  21. Heller M., Gerber P., Kieff E. Herpesvirus papio DNA is similar in organization to Epstein-Barr virus DNA. J Virol. 1981 Feb;37(2):698–709. doi: 10.1128/jvi.37.2.698-709.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Henkel T., Ling P. D., Hayward S. D., Peterson M. G. Mediation of Epstein-Barr virus EBNA2 transactivation by recombination signal-binding protein J kappa. Science. 1994 Jul 1;265(5168):92–95. doi: 10.1126/science.8016657. [DOI] [PubMed] [Google Scholar]
  23. Howe J. G., Shu M. D. Isolation and characterization of the genes for two small RNAs of herpesvirus papio and their comparison with Epstein-Barr virus-encoded EBER RNAs. J Virol. 1988 Aug;62(8):2790–2798. doi: 10.1128/jvi.62.8.2790-2798.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Hudson G. S., Bankier A. T., Satchwell S. C., Barrell B. G. The short unique region of the B95-8 Epstein-Barr virus genome. Virology. 1985 Nov;147(1):81–98. doi: 10.1016/0042-6822(85)90229-6. [DOI] [PubMed] [Google Scholar]
  25. Hudson G. S., Farrell P. J., Barrell B. G. Two related but differentially expressed potential membrane proteins encoded by the EcoRI Dhet region of Epstein-Barr virus B95-8. J Virol. 1985 Feb;53(2):528–535. doi: 10.1128/jvi.53.2.528-535.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Hummel M., Kieff E. Epstein-Barr virus RNA. VIII. Viral RNA in permissively infected B95-8 cells. J Virol. 1982 Jul;43(1):262–272. doi: 10.1128/jvi.43.1.262-272.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kalter S. S., Heberling R. L., Ratner J. J. EBV antibody in sera of non-human primates. Nature. 1972 Aug 11;238(5363):353–354. doi: 10.1038/238353a0. [DOI] [PubMed] [Google Scholar]
  28. Kalter S. S., Herberling R. L., Ratner J. J. EBV antibody in monkeys and apes. Bibl Haematol. 1973;39:871–875. doi: 10.1159/000427915. [DOI] [PubMed] [Google Scholar]
  29. Kim O. J., Yates J. L. Mutants of Epstein-Barr virus with a selective marker disrupting the TP gene transform B cells and replicate normally in culture. J Virol. 1993 Dec;67(12):7634–7640. doi: 10.1128/jvi.67.12.7634-7640.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Landon J. C., Ellis L. B., Zeve V. H., Fabrizio D. P. Herpes-type virus in cultured leukocytes from chimpanzees. J Natl Cancer Inst. 1968 Jan;40(1):181–192. [PubMed] [Google Scholar]
  31. Landon J. C., Malan L. B. Seroepidemiologic studies of Epstein-Barr virus antibody in monkeys. J Natl Cancer Inst. 1971 Apr;46(4):881–884. [PubMed] [Google Scholar]
  32. Lapin B. A. The epidemiologic and genetic aspects of an outbreak of leukemia among Hamadryas baboons of the Sukhumi monkey colony. Bibl Haematol. 1973;39:263–268. doi: 10.1159/000427851. [DOI] [PubMed] [Google Scholar]
  33. Laux G., Economou A., Farrell P. J. The terminal protein gene 2 of Epstein-Barr virus is transcribed from a bidirectional latent promoter region. J Gen Virol. 1989 Nov;70(Pt 11):3079–3084. doi: 10.1099/0022-1317-70-11-3079. [DOI] [PubMed] [Google Scholar]
  34. Laux G., Perricaudet M., Farrell P. J. A spliced Epstein-Barr virus gene expressed in immortalized lymphocytes is created by circularization of the linear viral genome. EMBO J. 1988 Mar;7(3):769–774. doi: 10.1002/j.1460-2075.1988.tb02874.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Lee S. P., Thomas W. A., Murray R. J., Khanim F., Kaur S., Young L. S., Rowe M., Kurilla M., Rickinson A. B. HLA A2.1-restricted cytotoxic T cells recognizing a range of Epstein-Barr virus isolates through a defined epitope in latent membrane protein LMP2. J Virol. 1993 Dec;67(12):7428–7435. doi: 10.1128/jvi.67.12.7428-7435.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Levine P. H., Leiseca S. A., Hewetson J. F., Traul K. A., Andrese A. P., Granlund D. J., Fabrizio P., Stevens D. A. Infection of rhesus monkeys and chimpanzees with Epstein-Barr virus. Arch Virol. 1980;66(4):341–351. doi: 10.1007/BF01320630. [DOI] [PubMed] [Google Scholar]
  37. Li S. L., Feichtinger H., Kaaya E., Migliorini P., Putkonen P., Biberfeld G., Middeldorp J. M., Biberfeld P., Ernberg I. Expression of Epstein-Barr-virus-related nuclear antigens and B-cell markers in lymphomas of SIV-immunosuppressed monkeys. Int J Cancer. 1993 Oct 21;55(4):609–615. doi: 10.1002/ijc.2910550416. [DOI] [PubMed] [Google Scholar]
  38. Li Z. H., Mahajan S., Prendergast M. M., Fargnoli J., Zhu X., Klages S., Adam D., Schieven G. L., Blake J., Bolen J. B. Cross-linking of surface immunoglobulin activates src-related tyrosine kinases in WEHI 231 cells. Biochem Biophys Res Commun. 1992 Sep 30;187(3):1536–1544. doi: 10.1016/0006-291x(92)90477-3. [DOI] [PubMed] [Google Scholar]
  39. Ling P. D., Hayward S. D. Contribution of conserved amino acids in mediating the interaction between EBNA2 and CBF1/RBPJk. J Virol. 1995 Mar;69(3):1944–1950. doi: 10.1128/jvi.69.3.1944-1950.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Ling P. D., Ryon J. J., Hayward S. D. EBNA-2 of herpesvirus papio diverges significantly from the type A and type B EBNA-2 proteins of Epstein-Barr virus but retains an efficient transactivation domain with a conserved hydrophobic motif. J Virol. 1993 Jun;67(6):2990–3003. doi: 10.1128/jvi.67.6.2990-3003.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Longnecker R., Druker B., Roberts T. M., Kieff E. An Epstein-Barr virus protein associated with cell growth transformation interacts with a tyrosine kinase. J Virol. 1991 Jul;65(7):3681–3692. doi: 10.1128/jvi.65.7.3681-3692.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Longnecker R., Miller C. L., Miao X. Q., Marchini A., Kieff E. The only domain which distinguishes Epstein-Barr virus latent membrane protein 2A (LMP2A) from LMP2B is dispensable for lymphocyte infection and growth transformation in vitro; LMP2A is therefore nonessential. J Virol. 1992 Nov;66(11):6461–6469. doi: 10.1128/jvi.66.11.6461-6469.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Longnecker R., Miller C. L., Miao X. Q., Tomkinson B., Kieff E. The last seven transmembrane and carboxy-terminal cytoplasmic domains of Epstein-Barr virus latent membrane protein 2 (LMP2) are dispensable for lymphocyte infection and growth transformation in vitro. J Virol. 1993 Apr;67(4):2006–2013. doi: 10.1128/jvi.67.4.2006-2013.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Longnecker R., Miller C. L., Tomkinson B., Miao X. Q., Kieff E. Deletion of DNA encoding the first five transmembrane domains of Epstein-Barr virus latent membrane proteins 2A and 2B. J Virol. 1993 Aug;67(8):5068–5074. doi: 10.1128/jvi.67.8.5068-5074.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Menezes J., Leibold W., Klein G. Biological differences between Epstein-Barr virus (EBV) strains with regard to lymphocyte transforming ability, superinfection and antigen induction. Exp Cell Res. 1975 May;92(2):478–484. doi: 10.1016/0014-4827(75)90404-8. [DOI] [PubMed] [Google Scholar]
  46. Miller C. L., Burkhardt A. L., Lee J. H., Stealey B., Longnecker R., Bolen J. B., Kieff E. Integral membrane protein 2 of Epstein-Barr virus regulates reactivation from latency through dominant negative effects on protein-tyrosine kinases. Immunity. 1995 Feb;2(2):155–166. doi: 10.1016/s1074-7613(95)80040-9. [DOI] [PubMed] [Google Scholar]
  47. Miller C. L., Lee J. H., Kieff E., Longnecker R. An integral membrane protein (LMP2) blocks reactivation of Epstein-Barr virus from latency following surface immunoglobulin crosslinking. Proc Natl Acad Sci U S A. 1994 Jan 18;91(2):772–776. doi: 10.1073/pnas.91.2.772. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Miller G., Niederman J. C., Stitt D. A. Infectious mononucleosis: appearance of neutralizing antibody to Epstein-Barr virus measured by inhibition of formation of lymphoblastoid cell lines. J Infect Dis. 1972 Apr;125(4):403–406. doi: 10.1093/infdis/125.4.403. [DOI] [PubMed] [Google Scholar]
  49. Miller W. E., Edwards R. H., Walling D. M., Raab-Traub N. Sequence variation in the Epstein-Barr virus latent membrane protein 1. J Gen Virol. 1994 Oct;75(Pt 10):2729–2740. doi: 10.1099/0022-1317-75-10-2729. [DOI] [PubMed] [Google Scholar]
  50. Murray R. J., Kurilla M. G., Brooks J. M., Thomas W. A., Rowe M., Kieff E., Rickinson A. B. Identification of target antigens for the human cytotoxic T cell response to Epstein-Barr virus (EBV): implications for the immune control of EBV-positive malignancies. J Exp Med. 1992 Jul 1;176(1):157–168. doi: 10.1084/jem.176.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. O'Gara R. W., Adamson R. H., Kelly M. G., Dalgard D. W. Neoplasms of the hematopoietic system in nonhuman primates: report of one spontaneous tumor and two leukemias induced by procarbazine. J Natl Cancer Inst. 1971 Jun;46(6):1121–1130. [PubMed] [Google Scholar]
  52. Persson B., Argos P. Prediction of transmembrane segments in proteins utilising multiple sequence alignments. J Mol Biol. 1994 Mar 25;237(2):182–192. doi: 10.1006/jmbi.1994.1220. [DOI] [PubMed] [Google Scholar]
  53. Qu L., Rowe D. T. Epstein-Barr virus latent gene expression in uncultured peripheral blood lymphocytes. J Virol. 1992 Jun;66(6):3715–3724. doi: 10.1128/jvi.66.6.3715-3724.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Rabin H., Neubauer R. H., Hopkins R. F., 3rd, Dzhikidze E. K., Shevtsova Z. V., Lapin B. A. Transforming activity and antigenicity of an Epstein-Barr-like virus from lymphoblastoid cell lines of baboons with lymphoid disease. Intervirology. 1977;8(4):240–249. doi: 10.1159/000148899. [DOI] [PubMed] [Google Scholar]
  55. Rangan S. R., Martin L. N., Bozelka B. E., Wang N., Gormus B. J. Epstein-Barr virus-related herpesvirus from a rhesus monkey (Macaca mulatta) with malignant lymphoma. Int J Cancer. 1986 Sep 15;38(3):425–432. doi: 10.1002/ijc.2910380319. [DOI] [PubMed] [Google Scholar]
  56. Ren R., Ye Z. S., Baltimore D. Abl protein-tyrosine kinase selects the Crk adapter as a substrate using SH3-binding sites. Genes Dev. 1994 Apr 1;8(7):783–795. doi: 10.1101/gad.8.7.783. [DOI] [PubMed] [Google Scholar]
  57. Rowe M., Young L. S., Cadwallader K., Petti L., Kieff E., Rickinson A. B. Distinction between Epstein-Barr virus type A (EBNA 2A) and type B (EBNA 2B) isolates extends to the EBNA 3 family of nuclear proteins. J Virol. 1989 Mar;63(3):1031–1039. doi: 10.1128/jvi.63.3.1031-1039.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Ryon J. J., Fixman E. D., Houchens C., Zong J., Lieberman P. M., Chang Y. N., Hayward G. S., Hayward S. D. The lytic origin of herpesvirus papio is highly homologous to Epstein-Barr virus ori-Lyt: evolutionary conservation of transcriptional activation and replication signals. J Virol. 1993 Jul;67(7):4006–4016. doi: 10.1128/jvi.67.7.4006-4016.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Saksela K., Cheng G., Baltimore D. Proline-rich (PxxP) motifs in HIV-1 Nef bind to SH3 domains of a subset of Src kinases and are required for the enhanced growth of Nef+ viruses but not for down-regulation of CD4. EMBO J. 1995 Feb 1;14(3):484–491. doi: 10.1002/j.1460-2075.1995.tb07024.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Sample J., Liebowitz D., Kieff E. Two related Epstein-Barr virus membrane proteins are encoded by separate genes. J Virol. 1989 Feb;63(2):933–937. doi: 10.1128/jvi.63.2.933-937.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Schable C. A., Murphy B. L., Berquist K. R., Gravelle C. R., Maynard J. E. Inability to detect hepatitis B virus or specific antigens in transformed chimpanzee lymphocytes. Infect Immun. 1974 Dec;10(6):1443–1444. doi: 10.1128/iai.10.6.1443-1444.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Stevens D. A., Pry T. W., Blackham E. A., Manaker R. A. Comparison of antigens from human and chimpanzee herpes-type virus-infected hemic cell lines. Proc Soc Exp Biol Med. 1970 Feb;133(2):678–683. doi: 10.3181/00379727-133-34543. [DOI] [PubMed] [Google Scholar]
  63. Tsang S. F., Wang F., Izumi K. M., Kieff E. Delineation of the cis-acting element mediating EBNA-2 transactivation of latent infection membrane protein expression. J Virol. 1991 Dec;65(12):6765–6771. doi: 10.1128/jvi.65.12.6765-6771.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Wang F., Gregory C., Sample C., Rowe M., Liebowitz D., Murray R., Rickinson A., Kieff E. Epstein-Barr virus latent membrane protein (LMP1) and nuclear proteins 2 and 3C are effectors of phenotypic changes in B lymphocytes: EBNA-2 and LMP1 cooperatively induce CD23. J Virol. 1990 May;64(5):2309–2318. doi: 10.1128/jvi.64.5.2309-2318.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Weiss A., Littman D. R. Signal transduction by lymphocyte antigen receptors. Cell. 1994 Jan 28;76(2):263–274. doi: 10.1016/0092-8674(94)90334-4. [DOI] [PubMed] [Google Scholar]
  66. Yu H., Chen J. K., Feng S., Dalgarno D. C., Brauer A. W., Schreiber S. L. Structural basis for the binding of proline-rich peptides to SH3 domains. Cell. 1994 Mar 11;76(5):933–945. doi: 10.1016/0092-8674(94)90367-0. [DOI] [PubMed] [Google Scholar]
  67. Zimber-Strobl U., Kremmer E., Grässer F., Marschall G., Laux G., Bornkamm G. W. The Epstein-Barr virus nuclear antigen 2 interacts with an EBNA2 responsive cis-element of the terminal protein 1 gene promoter. EMBO J. 1993 Jan;12(1):167–175. doi: 10.1002/j.1460-2075.1993.tb05642.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Zimber-Strobl U., Suentzenich K. O., Laux G., Eick D., Cordier M., Calender A., Billaud M., Lenoir G. M., Bornkamm G. W. Epstein-Barr virus nuclear antigen 2 activates transcription of the terminal protein gene. J Virol. 1991 Jan;65(1):415–423. doi: 10.1128/jvi.65.1.415-423.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. de Campos-Lima P. O., Gavioli R., Zhang Q. J., Wallace L. E., Dolcetti R., Rowe M., Rickinson A. B., Masucci M. G. HLA-A11 epitope loss isolates of Epstein-Barr virus from a highly A11+ population. Science. 1993 Apr 2;260(5104):98–100. doi: 10.1126/science.7682013. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES