Abstract
Human herpesvirus 6 (HHV-6) and HHV-7 are closely related T-lymphotropic betaherpesviruses which share a common genomic organization and are composed of a single unique component (U) that is bounded by direct repeats (DRL and DRR). In HHV-6, a sequences have been identified at each end of the DR motifs, resulting in the arrangement aDRLa-U-aDRRa. In order to determine whether determine whether HHV-7 contains similar a sequences, we have sequenced the DRL-U and U-DRR junctions of HHV-7 strain JI, together with the DRR.DRL junction from the head-to-tail concatamer that is generated during productive virus infection. In addition, we have sequenced the genomic termini of an independent isolate of HHV-7. As in HHV-6, a (GGGTTA)n motif identical to the human telomeric repeat sequence (TRS) was identified adjacent to, but not at, the genome termini of HHV-7. The left genome terminus and the U-DRR junction contained a homolog of the consensus herpesvirus packaging signal, pac-1, followed by short tandem arrays of TRSs separated by single copies of a second 6-bp repeat. This organization is similar to the arrangement found at U-DRR in HHV-6 but differs from it in that the TRS arrays are considerably shorter in HHV-7. The right genome terminus and the DRL-U junction contained a homolog of the consensus herpesvirus packaging signal, pac-2, followed by longer tandem arrays of TRSs separated by single copies of either a 6-bp or a 14-bp repeat. This arrangement is considerably more complex than the simple tandem array of TRSs that is present at the corresponding genomic location in HHV-6 and corresponds to a site of both inter- and intrastrain heterogeneity in HHV-7. The presence of TRSs in lymphotropic herpesviruses from humans (HHV-6 and HHV-7), horse (equine herpesvirus 2), and birds (Marek's disease virus) is striking and suggests that these sequences may have functional or structural significance.
Full Text
The Full Text of this article is available as a PDF (514.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agius C. T., Studdert M. J. Equine herpesviruses 2 and 5: comparisons with other members of the subfamily gammaherpesvirinae. Adv Virus Res. 1994;44:357–379. doi: 10.1016/s0065-3527(08)60333-4. [DOI] [PubMed] [Google Scholar]
- Asano Y., Suga S., Yoshikawa T., Yazaki T., Uchikawa T. Clinical features and viral excretion in an infant with primary human herpesvirus 7 infection. Pediatrics. 1995 Feb;95(2):187–190. [PubMed] [Google Scholar]
- Berneman Z. N., Ablashi D. V., Li G., Eger-Fletcher M., Reitz M. S., Jr, Hung C. L., Brus I., Komaroff A. L., Gallo R. C. Human herpesvirus 7 is a T-lymphotropic virus and is related to, but significantly different from, human herpesvirus 6 and human cytomegalovirus. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10552–10556. doi: 10.1073/pnas.89.21.10552. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berneman Z. N., Gallo R. C., Ablashi D. V., Frenkel N., Katsafanas G., Kramarsky B., Brus I. Human herpesvirus 7 (HHV-7) strain JI: independent confirmation of HHV-7. J Infect Dis. 1992 Sep;166(3):690–691. doi: 10.1093/infdis/166.3.690. [DOI] [PubMed] [Google Scholar]
- Blackburn E. H. Structure and function of telomeres. Nature. 1991 Apr 18;350(6319):569–573. doi: 10.1038/350569a0. [DOI] [PubMed] [Google Scholar]
- Buckmaster A. E., Scott S. D., Sanderson M. J., Boursnell M. E., Ross N. L., Binns M. M. Gene sequence and mapping data from Marek's disease virus and herpesvirus of turkeys: implications for herpesvirus classification. J Gen Virol. 1988 Aug;69(Pt 8):2033–2042. doi: 10.1099/0022-1317-69-8-2033. [DOI] [PubMed] [Google Scholar]
- Clark D. A., Freeland M. L., Mackie L. K., Jarrett R. F., Onions D. E. Prevalence of antibody to human herpesvirus 7 by age. J Infect Dis. 1993 Jul;168(1):251–252. doi: 10.1093/infdis/168.1.251. [DOI] [PubMed] [Google Scholar]
- Davison A. J. Channel catfish virus: a new type of herpesvirus. Virology. 1992 Jan;186(1):9–14. doi: 10.1016/0042-6822(92)90056-u. [DOI] [PubMed] [Google Scholar]
- Davison A. J. Structure of the genome termini of varicella-zoster virus. J Gen Virol. 1984 Nov;65(Pt 11):1969–1977. doi: 10.1099/0022-1317-65-11-1969. [DOI] [PubMed] [Google Scholar]
- Deiss L. P., Chou J., Frenkel N. Functional domains within the a sequence involved in the cleavage-packaging of herpes simplex virus DNA. J Virol. 1986 Sep;59(3):605–618. doi: 10.1128/jvi.59.3.605-618.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frenkel N., Schirmer E. C., Wyatt L. S., Katsafanas G., Roffman E., Danovich R. M., June C. H. Isolation of a new herpesvirus from human CD4+ T cells. Proc Natl Acad Sci U S A. 1990 Jan;87(2):748–752. doi: 10.1073/pnas.87.2.748. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frenkel N., Wyatt L. S. HHV-6 and HHV-7 as exogenous agents in human lymphocytes. Dev Biol Stand. 1992;76:259–265. [PubMed] [Google Scholar]
- Gompels U. A., Macaulay H. A. Characterization of human telomeric repeat sequences from human herpesvirus 6 and relationship to replication. J Gen Virol. 1995 Feb;76(Pt 2):451–458. doi: 10.1099/0022-1317-76-2-451. [DOI] [PubMed] [Google Scholar]
- Gompels U. A., Nicholas J., Lawrence G., Jones M., Thomson B. J., Martin M. E., Efstathiou S., Craxton M., Macaulay H. A. The DNA sequence of human herpesvirus-6: structure, coding content, and genome evolution. Virology. 1995 May 10;209(1):29–51. doi: 10.1006/viro.1995.1228. [DOI] [PubMed] [Google Scholar]
- Hall C. B., Long C. E., Schnabel K. C., Caserta M. T., McIntyre K. M., Costanzo M. A., Knott A., Dewhurst S., Insel R. A., Epstein L. G. Human herpesvirus-6 infection in children. A prospective study of complications and reactivation. N Engl J Med. 1994 Aug 18;331(7):432–438. doi: 10.1056/NEJM199408183310703. [DOI] [PubMed] [Google Scholar]
- Hidaka Y., Okada K., Kusuhara K., Miyazaki C., Tokugawa K., Ueda K. Exanthem subitum and human herpesvirus 7 infection. Pediatr Infect Dis J. 1994 Nov;13(11):1010–1011. [PubMed] [Google Scholar]
- Kishi M., Bradley G., Jessip J., Tanaka A., Nonoyama M. Inverted repeat regions of Marek's disease virus DNA possess a structure similar to that of the a sequence of herpes simplex virus DNA and contain host cell telomere sequences. J Virol. 1991 Jun;65(6):2791–2797. doi: 10.1128/jvi.65.6.2791-2797.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kishi M., Harada H., Takahashi M., Tanaka A., Hayashi M., Nonoyama M., Josephs S. F., Buchbinder A., Schachter F., Ablashi D. V. A repeat sequence, GGGTTA, is shared by DNA of human herpesvirus 6 and Marek's disease virus. J Virol. 1988 Dec;62(12):4824–4827. doi: 10.1128/jvi.62.12.4824-4827.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lindquester G. J., Pellett P. E. Properties of the human herpesvirus 6 strain Z29 genome: G + C content, length, and presence of variable-length directly repeated terminal sequence elements. Virology. 1991 May;182(1):102–110. doi: 10.1016/0042-6822(91)90653-s. [DOI] [PubMed] [Google Scholar]
- Liu Z., Gilbert W. The yeast KEM1 gene encodes a nuclease specific for G4 tetraplex DNA: implication of in vivo functions for this novel DNA structure. Cell. 1994 Jul 1;77(7):1083–1092. doi: 10.1016/0092-8674(94)90447-2. [DOI] [PubMed] [Google Scholar]
- Lusso P., Secchiero P., Crowley R. W., Garzino-Demo A., Berneman Z. N., Gallo R. C. CD4 is a critical component of the receptor for human herpesvirus 7: interference with human immunodeficiency virus. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3872–3876. doi: 10.1073/pnas.91.9.3872. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mocarski E. S., Liu A. C., Spaete R. R. Structure and variability of the a sequence in the genome of human cytomegalovirus (Towne strain). J Gen Virol. 1987 Aug;68(Pt 8):2223–2230. doi: 10.1099/0022-1317-68-8-2223. [DOI] [PubMed] [Google Scholar]
- Mocarski E. S., Roizman B. Structure and role of the herpes simplex virus DNA termini in inversion, circularization and generation of virion DNA. Cell. 1982 Nov;31(1):89–97. doi: 10.1016/0092-8674(82)90408-1. [DOI] [PubMed] [Google Scholar]
- Portolani M., Cermelli C., Mirandola P., Di Luca D. Isolation of human herpesvirus 7 from an infant with febrile syndrome. J Med Virol. 1995 Mar;45(3):282–283. doi: 10.1002/jmv.1890450307. [DOI] [PubMed] [Google Scholar]
- Pruksananonda P., Hall C. B., Insel R. A., McIntyre K., Pellett P. E., Long C. E., Schnabel K. C., Pincus P. H., Stamey F. R., Dambaugh T. R. Primary human herpesvirus 6 infection in young children. N Engl J Med. 1992 May 28;326(22):1445–1450. doi: 10.1056/NEJM199205283262201. [DOI] [PubMed] [Google Scholar]
- Roizmann B., Desrosiers R. C., Fleckenstein B., Lopez C., Minson A. C., Studdert M. J. The family Herpesviridae: an update. The Herpesvirus Study Group of the International Committee on Taxonomy of Viruses. Arch Virol. 1992;123(3-4):425–449. doi: 10.1007/BF01317276. [DOI] [PubMed] [Google Scholar]
- Salahuddin S. Z., Ablashi D. V., Markham P. D., Josephs S. F., Sturzenegger S., Kaplan M., Halligan G., Biberfeld P., Wong-Staal F., Kramarsky B. Isolation of a new virus, HBLV, in patients with lymphoproliferative disorders. Science. 1986 Oct 31;234(4776):596–601. doi: 10.1126/science.2876520. [DOI] [PubMed] [Google Scholar]
- Sarisky R. T., Weber P. C. Role of anisomorphic DNA conformations in the negative regulation of a herpes simplex virus type 1 promoter. Virology. 1994 Nov 1;204(2):569–579. doi: 10.1006/viro.1994.1571. [DOI] [PubMed] [Google Scholar]
- Secchiero P., Berneman Z. N., Gallo R. C., Lusso P. Biological and molecular characteristics of human herpesvirus 7: in vitro growth optimization and development of a syncytia inhibition test. Virology. 1994 Jul;202(1):506–512. doi: 10.1006/viro.1994.1371. [DOI] [PubMed] [Google Scholar]
- Spaete R. R., Frenkel N. The herpes simplex virus amplicon: a new eucaryotic defective-virus cloning-amplifying vector. Cell. 1982 Aug;30(1):295–304. doi: 10.1016/0092-8674(82)90035-6. [DOI] [PubMed] [Google Scholar]
- Stow N. D., McMonagle E. C., Davison A. J. Fragments from both termini of the herpes simplex virus type 1 genome contain signals required for the encapsidation of viral DNA. Nucleic Acids Res. 1983 Dec 10;11(23):8205–8220. doi: 10.1093/nar/11.23.8205. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tanaka K., Kondo T., Torigoe S., Okada S., Mukai T., Yamanishi K. Human herpesvirus 7: another causal agent for roseola (exanthem subitum). J Pediatr. 1994 Jul;125(1):1–5. doi: 10.1016/s0022-3476(94)70113-x. [DOI] [PubMed] [Google Scholar]
- Telford E. A., Watson M. S., Aird H. C., Perry J., Davison A. J. The DNA sequence of equine herpesvirus 2. J Mol Biol. 1995 Jun 9;249(3):520–528. doi: 10.1006/jmbi.1995.0314. [DOI] [PubMed] [Google Scholar]
- Thomson B. J., Dewhurst S., Gray D. Structure and heterogeneity of the a sequences of human herpesvirus 6 strain variants U1102 and Z29 and identification of human telomeric repeat sequences at the genomic termini. J Virol. 1994 May;68(5):3007–3014. doi: 10.1128/jvi.68.5.3007-3014.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Torelli G., Barozzi P., Marasca R., Cocconcelli P., Merelli E., Ceccherini-Nelli L., Ferrari S., Luppi M. Targeted integration of human herpesvirus 6 in the p arm of chromosome 17 of human peripheral blood mononuclear cells in vivo. J Med Virol. 1995 Jul;46(3):178–188. doi: 10.1002/jmv.1890460303. [DOI] [PubMed] [Google Scholar]
- Varmuza S. L., Smiley J. R. Signals for site-specific cleavage of HSV DNA: maturation involves two separate cleavage events at sites distal to the recognition sequences. Cell. 1985 Jul;41(3):793–802. doi: 10.1016/s0092-8674(85)80060-x. [DOI] [PubMed] [Google Scholar]
- Wohlrab F., Chatterjee S., Wells R. D. The herpes simplex virus 1 segment inversion site is specifically cleaved by a virus-induced nuclear endonuclease. Proc Natl Acad Sci U S A. 1991 Aug 1;88(15):6432–6436. doi: 10.1073/pnas.88.15.6432. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wyatt L. S., Frenkel N. Human herpesvirus 7 is a constitutive inhabitant of adult human saliva. J Virol. 1992 May;66(5):3206–3209. doi: 10.1128/jvi.66.5.3206-3209.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wyatt L. S., Rodriguez W. J., Balachandran N., Frenkel N. Human herpesvirus 7: antigenic properties and prevalence in children and adults. J Virol. 1991 Nov;65(11):6260–6265. doi: 10.1128/jvi.65.11.6260-6265.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamanishi K., Okuno T., Shiraki K., Takahashi M., Kondo T., Asano Y., Kurata T. Identification of human herpesvirus-6 as a causal agent for exanthem subitum. Lancet. 1988 May 14;1(8594):1065–1067. doi: 10.1016/s0140-6736(88)91893-4. [DOI] [PubMed] [Google Scholar]
- Zimmermann J., Hammerschmidt W. Structure and role of the terminal repeats of Epstein-Barr virus in processing and packaging of virion DNA. J Virol. 1995 May;69(5):3147–3155. doi: 10.1128/jvi.69.5.3147-3155.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]