Abstract
In C58 and AKR mice, endogenous N-tropic, ecotropic murine leukemia virus (MuLV) proviruses become activated in rare cells during embryogenesis. Resultant replication-competent progeny viruses then actively infect a large number of cells throughout the fetus, including cells in the developing central nervous system. By in situ hybridization analyses, we have assessed the presence of ecotropic MuLV RNA in the brains of C58 mice as a function of age. Only a few ecotropic MuLV-positive cells were observed in weanling mice, but the number of positive cells in the brain increased progressively with increasing age of the mice. Throughout the lives of the mice, the ecotropic MuLV RNA-positive cells were primarily located in well-defined white-matter tracts of the brain (commissura anterior, corpus callosum, fimbria hippocampi, optical tract, and striatum) and of the spinal cord. Cells of the subventricular zone also expressed ecotropic MuLV RNA, and in older mice a small number of positive cells were present in the grey matter. Infection of endogenous ecotropic MuLV provirus-less CE/J mice in utero with ecotropic MuLV clone AKR-623 resulted in the extensive infection of brain cells. The regional distribution of ecotropic MuLV RNA-containing cells was the same as observed in the brains of C58 mice, in which cells became infected by endogenously activated virus, but the number of positive cells was higher.
Full Text
The Full Text of this article is available as a PDF (2.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson G. W., Palmer G. A., Rowland R. R., Even C., Plagemann P. G. Infection of central nervous system cells by ecotropic murine leukemia virus in C58 and AKR mice and in in utero-infected CE/J mice predisposes mice to paralytic infection by lactate dehydrogenase-elevating virus. J Virol. 1995 Jan;69(1):308–319. doi: 10.1128/jvi.69.1.308-319.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bartman T., Murasko D. M., Sieck T. G., Turturro A., Hart R., Blank K. J. A murine leukemia virus expressed in aged DBA/2 mice is derived by recombination of the Emv-3 locus and another endogenous gag sequence. Virology. 1994 Aug 15;203(1):1–7. doi: 10.1006/viro.1994.1448. [DOI] [PubMed] [Google Scholar]
- Blum H. E., Haase A. T., Vyas G. N. Molecular pathogenesis of hepatitis B virus infection: simultaneous detection of viral DNA and antigens in paraffin-embedded liver sections. Lancet. 1984 Oct 6;2(8406):771–775. doi: 10.1016/s0140-6736(84)90703-7. [DOI] [PubMed] [Google Scholar]
- Branks P. L., Wilson M. C. Patterns of gene expression in the murine brain revealed by in situ hybridization of brain-specific mRNAs. Brain Res. 1986 Jul;387(1):1–16. doi: 10.1016/0169-328x(86)90015-x. [DOI] [PubMed] [Google Scholar]
- Contag C. H., Plagemann P. G. Age-dependent poliomyelitis of mice: expression of endogenous retrovirus correlates with cytocidal replication of lactate dehydrogenase-elevating virus in motor neurons. J Virol. 1989 Oct;63(10):4362–4369. doi: 10.1128/jvi.63.10.4362-4369.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Copeland N. G., Bedigian H. G., Thomas C. Y., Jenkins N. A. DNAs of two molecularly cloned endogenous ecotropic proviruses are poorly infectious in DNA transfection assays. J Virol. 1984 Feb;49(2):437–444. doi: 10.1128/jvi.49.2.437-444.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Copeland N. G., Jenkins N. A., Nexø B., Schultz A. M., Rein A., Mikkelsen T., Jørgensen P. Poorly expressed endogenous ecotropic provirus of DBA/2 mice encodes a mutant Pr65gag protein that is not myristylated. J Virol. 1988 Feb;62(2):479–487. doi: 10.1128/jvi.62.2.479-487.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gilbert D. J., Neumann P. E., Taylor B. A., Jenkins N. A., Copeland N. G. Susceptibility of AKXD recombinant inbred mouse strains to lymphomas. J Virol. 1993 Apr;67(4):2083–2090. doi: 10.1128/jvi.67.4.2083-2090.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gravel C., Kay D. G., Jolicoeur P. Identification of the infected target cell type in spongiform myeloencephalopathy induced by the neurotropic Cas-Br-E murine leukemia virus. J Virol. 1993 Nov;67(11):6648–6658. doi: 10.1128/jvi.67.11.6648-6658.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hirose Y., Takamatsu M., Harada F. Presence of env genes in members of the RTVL-H family of human endogenous retrovirus-like elements. Virology. 1993 Jan;192(1):52–61. doi: 10.1006/viro.1993.1007. [DOI] [PubMed] [Google Scholar]
- Jenkins N. A., Copeland N. G., Taylor B. A., Lee B. K. Dilute (d) coat colour mutation of DBA/2J mice is associated with the site of integration of an ecotropic MuLV genome. Nature. 1981 Oct 1;293(5831):370–374. doi: 10.1038/293370a0. [DOI] [PubMed] [Google Scholar]
- Jenkins N. A., Copeland N. G., Taylor B. A., Lee B. K. Organization, distribution, and stability of endogenous ecotropic murine leukemia virus DNA sequences in chromosomes of Mus musculus. J Virol. 1982 Jul;43(1):26–36. doi: 10.1128/jvi.43.1.26-36.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jolicoeur P., Rassart E., DesGroseillers L., Robitaille Y., Paquette Y., Kay D. G. Retrovirus-induced motor neuron disease of mice: molecular basis of neurotropism and paralysis. Adv Neurol. 1991;56:481–493. [PubMed] [Google Scholar]
- Jolicoeur P. The Fv-1 gene of the mouse and its control of murine leukemia virus replication. Curr Top Microbiol Immunol. 1979;86:67–122. doi: 10.1007/978-3-642-67341-2_3. [DOI] [PubMed] [Google Scholar]
- Larsson E., Kato N., Cohen M. Human endogenous proviruses. Curr Top Microbiol Immunol. 1989;148:115–132. doi: 10.1007/978-3-642-74700-7_4. [DOI] [PubMed] [Google Scholar]
- Lewis P. F., Emerman M. Passage through mitosis is required for oncoretroviruses but not for the human immunodeficiency virus. J Virol. 1994 Jan;68(1):510–516. doi: 10.1128/jvi.68.1.510-516.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lindeskog M., Medstrand P., Blomberg J. Sequence variation of human endogenous retrovirus ERV9-related elements in an env region corresponding to an immunosuppressive peptide: transcription in normal and neoplastic cells. J Virol. 1993 Feb;67(2):1122–1126. doi: 10.1128/jvi.67.2.1122-1126.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lowy D. R., Rands E., Chattopadhyay S. K., Garon C. F., Hager G. L. Molecular cloning of infectious integrated murine leukemia virus DNA from infected mouse cells. Proc Natl Acad Sci U S A. 1980 Jan;77(1):614–618. doi: 10.1073/pnas.77.1.614. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Portis J. L. Wild mouse retrovirus: pathogenesis. Curr Top Microbiol Immunol. 1990;160:11–27. doi: 10.1007/978-3-642-75267-4_2. [DOI] [PubMed] [Google Scholar]
- Rowe W. P., Pincus T. Quantitative studies of naturally occurring murine leukemia virus infection of AKR mice. J Exp Med. 1972 Feb 1;135(2):429–436. doi: 10.1084/jem.135.2.429. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stoye J. P., Coffin J. M. The four classes of endogenous murine leukemia virus: structural relationships and potential for recombination. J Virol. 1987 Sep;61(9):2659–2669. doi: 10.1128/jvi.61.9.2659-2669.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stoye J. P., Moroni C., Coffin J. M. Virological events leading to spontaneous AKR thymomas. J Virol. 1991 Mar;65(3):1273–1285. doi: 10.1128/jvi.65.3.1273-1285.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilkinson D. A., Goodchild N. L., Saxton T. M., Wood S., Mager D. L. Evidence for a functional subclass of the RTVL-H family of human endogenous retrovirus-like sequences. J Virol. 1993 Jun;67(6):2981–2989. doi: 10.1128/jvi.67.6.2981-2989.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
