Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1995 Dec;69(12):8159–8163. doi: 10.1128/jvi.69.12.8159-8163.1995

Molecular and functional characterization of turkey interferon.

M Suresh 1, K Karaca 1, D Foster 1, J M Sharma 1
PMCID: PMC189774  PMID: 7494342

Abstract

The turkey interferon (TkIFN) gene encodes a signal peptide and a mature protein of 30 and 162 amino acids, respectively. TkIFN mRNA expression was induced by reoviral double-stranded RNA in fibroblasts. The recombinant TkIFN protein possessed species-specific antiviral activity and in synergy with lipopolysaccharide (LPS) induced bone marrow macrophages to produce nitric oxide (NO). LPS or TkIFN alone did not induce bone marrow macrophages to produce significant amounts of NO, which showed that TkIFN provided one of the two signals necessary to induce NO production in turkey macrophages. Unlike the anti-inflammatory nature of mammalian alpha/beta IFNs, TkIFN augmented the LPS-induced expression of interleukin-8, a proinflammatory cytokine. This finding suggests a role for TkIFN in inflammatory conditions.

Full Text

The Full Text of this article is available as a PDF (230.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aman M. J., Rudolf G., Goldschmitt J., Aulitzky W. E., Lam C., Huber C., Peschel C. Type-I interferons are potent inhibitors of interleukin-8 production in hematopoietic and bone marrow stromal cells. Blood. 1993 Oct 15;82(8):2371–2378. [PubMed] [Google Scholar]
  2. Barker K. A., Hampe A., Stoeckle M. Y., Hanafusa H. Transformation-associated cytokine 9E3/CEF4 is chemotactic for chicken peripheral blood mononuclear cells. J Virol. 1993 Jun;67(6):3528–3533. doi: 10.1128/jvi.67.6.3528-3533.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barker K., Hanafusa H. Expression of 9E3 mRNA is associated with mitogenicity, phosphorylation, and morphological alteration in chicken embryo fibroblasts. Mol Cell Biol. 1990 Jul;10(7):3813–3817. doi: 10.1128/mcb.10.7.3813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bazer F. W. Mediators of maternal recognition of pregnancy in mammals. Proc Soc Exp Biol Med. 1992 Apr;199(4):373–384. doi: 10.3181/00379727-199-43371a. [DOI] [PubMed] [Google Scholar]
  5. Dijkmans R., Creemers J., Billiau A. Chicken macrophage activation by interferon: do birds lack the molecular homologue of mammalian interferon-gamma? Vet Immunol Immunopathol. 1990 Dec;26(4):319–332. doi: 10.1016/0165-2427(90)90116-a. [DOI] [PubMed] [Google Scholar]
  6. Farrar M. A., Schreiber R. D. The molecular cell biology of interferon-gamma and its receptor. Annu Rev Immunol. 1993;11:571–611. doi: 10.1146/annurev.iy.11.040193.003035. [DOI] [PubMed] [Google Scholar]
  7. Fujihara M., Ito N., Pace J. L., Watanabe Y., Russell S. W., Suzuki T. Role of endogenous interferon-beta in lipopolysaccharide-triggered activation of the inducible nitric-oxide synthase gene in a mouse macrophage cell line, J774. J Biol Chem. 1994 Apr 29;269(17):12773–12778. [PubMed] [Google Scholar]
  8. Heremans H., Dijkmans R., Sobis H., Vandekerckhove F., Billiau A. Regulation by interferons of the local inflammatory response to bacterial lipopolysaccharide. J Immunol. 1987 Jun 15;138(12):4175–4179. [PubMed] [Google Scholar]
  9. Kawade Y. Quantitation of neutralization of interferon by antibody. Methods Enzymol. 1986;119:558–573. doi: 10.1016/0076-6879(86)19076-8. [DOI] [PubMed] [Google Scholar]
  10. Kost T. A., Theodorakis N., Hughes S. H. The nucleotide sequence of the chick cytoplasmic beta-actin gene. Nucleic Acids Res. 1983 Dec 10;11(23):8287–8301. doi: 10.1093/nar/11.23.8287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Leutz A., Damm K., Sterneck E., Kowenz E., Ness S., Frank R., Gausepohl H., Pan Y. C., Smart J., Hayman M. Molecular cloning of the chicken myelomonocytic growth factor (cMGF) reveals relationship to interleukin 6 and granulocyte colony stimulating factor. EMBO J. 1989 Jan;8(1):175–181. doi: 10.1002/j.1460-2075.1989.tb03362.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lorsbach R. B., Murphy W. J., Lowenstein C. J., Snyder S. H., Russell S. W. Expression of the nitric oxide synthase gene in mouse macrophages activated for tumor cell killing. Molecular basis for the synergy between interferon-gamma and lipopolysaccharide. J Biol Chem. 1993 Jan 25;268(3):1908–1913. [PubMed] [Google Scholar]
  13. Murray H. W. The interferons, macrophage activation, and host defense against nonviral pathogens. J Interferon Res. 1992 Oct;12(5):319–322. doi: 10.1089/jir.1992.12.319. [DOI] [PubMed] [Google Scholar]
  14. Ohshima H., Tsuda M., Adachi H., Ogura T., Sugimura T., Esumi H. L-arginine-dependent formation of N-nitrosamines by the cytosol of macrophages activated with lipopolysaccharide and interferon-gamma. Carcinogenesis. 1991 Jul;12(7):1217–1220. doi: 10.1093/carcin/12.7.1217. [DOI] [PubMed] [Google Scholar]
  15. Oliveira I. C., Sciavolino P. J., Lee T. H., Vilcek J. Downregulation of interleukin 8 gene expression in human fibroblasts: unique mechanism of transcriptional inhibition by interferon. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):9049–9053. doi: 10.1073/pnas.89.19.9049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Pazzagli M., Devine J. H., Peterson D. O., Baldwin T. O. Use of bacterial and firefly luciferases as reporter genes in DEAE-dextran-mediated transfection of mammalian cells. Anal Biochem. 1992 Aug 1;204(2):315–323. doi: 10.1016/0003-2697(92)90245-3. [DOI] [PubMed] [Google Scholar]
  17. Punjabi C. J., Laskin J. D., Hwang S. M., MacEachern L., Laskin D. L. Enhanced production of nitric oxide by bone marrow cells and increased sensitivity to macrophage colony-stimulating factor (CSF) and granulocyte-macrophage CSF after benzene treatment of mice. Blood. 1994 Jun 1;83(11):3255–3263. [PubMed] [Google Scholar]
  18. Ray A., Tatter S. B., May L. T., Sehgal P. B. Activation of the human "beta 2-interferon/hepatocyte-stimulating factor/interleukin 6" promoter by cytokines, viruses, and second messenger agonists. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6701–6705. doi: 10.1073/pnas.85.18.6701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sekellick M. J., Ferrandino A. F., Hopkins D. A., Marcus P. I. Chicken interferon gene: cloning, expression, and analysis. J Interferon Res. 1994 Apr;14(2):71–79. doi: 10.1089/jir.1994.14.71. [DOI] [PubMed] [Google Scholar]
  20. Sekellick M. J., Marcus P. I. Induction of high titer chicken interferon. Methods Enzymol. 1986;119:115–125. doi: 10.1016/0076-6879(86)19020-3. [DOI] [PubMed] [Google Scholar]
  21. Sharma J. M. In situ production of interferon in tissues of chickens exposed as embryos to turkey herpesvirus and Marek's disease virus. Am J Vet Res. 1989 Jun;50(6):882–886. [PubMed] [Google Scholar]
  22. Steinmann G. G., Rosenkaimer F., Leitz G. Clinical experiences with interferon-alpha and interferon-gamma. Int Rev Exp Pathol. 1993;34(Pt B):193–207. [PubMed] [Google Scholar]
  23. Sugano S., Stoeckle M. Y., Hanafusa H. Transformation by Rous sarcoma virus induces a novel gene with homology to a mitogenic platelet protein. Cell. 1987 May 8;49(3):321–328. doi: 10.1016/0092-8674(87)90284-4. [DOI] [PubMed] [Google Scholar]
  24. Sung Y. J., Hotchkiss J. H., Austic R. E., Dietert R. R. L-arginine-dependent production of a reactive nitrogen intermediate by macrophages of a uricotelic species. J Leukoc Biol. 1991 Jul;50(1):49–56. doi: 10.1002/jlb.50.1.49. [DOI] [PubMed] [Google Scholar]
  25. Zhang X., Alley E. W., Russell S. W., Morrison D. C. Necessity and sufficiency of beta interferon for nitric oxide production in mouse peritoneal macrophages. Infect Immun. 1994 Jan;62(1):33–40. doi: 10.1128/iai.62.1.33-40.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES