Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1996 Jan;70(1):141–147. doi: 10.1128/jvi.70.1.141-147.1996

Identification of two epitopes on the dengue 4 virus capsid protein recognized by a serotype-specific and a panel of serotype-cross-reactive human CD4+ cytotoxic T-lymphocyte clones.

S J Gagnon 1, W Zeng 1, I Kurane 1, F A Ennis 1
PMCID: PMC189798  PMID: 8523518

Abstract

We analyzed the CD4+ T-lymphocyte response of a donor who had received an experimental live-attenuated dengue 4 virus (D4V) vaccine. Bulk culture proliferative responses of peripheral blood mononuclear cells (PBMC) to noninfectious dengue virus (DV) antigens showed the highest proliferation to D4V antigen, with lesser, cross-reactive proliferation to D2V antigen. We established CD4+ cytotoxic T-lymphocyte clones (CTL) by stimulation with D4 antigen. Using recombinant baculovirus antigens, we identified seven CTL clones that recognized D4V capsid protein. Six of these CTL clones were cross-reactive between D2 and D4, and one clone was specific for D4. Using synthetic peptides, we found that the D4V-specific CTL clone recognized an epitope between amino acids (aa) 47 and 55 of the capsid protein, while the cross-reactive CTL clones each recognized epitopes in a separate location, between aa 83 and 92, which is conserved between D2V and D4V. This region of the capsid protein induced a variety of CD4+ T-cell responses, as indicated by the fact that six clones which recognized a peptide spanning this region showed heterogeneity in their recognition of truncations of this same peptide. The bulk culture response of the donor's PBMC to the epitope peptide spanning aa 84 to 92 was also examined. Peptides containing this epitope induced proliferation of the donor's PBMC in bulk culture, but peptides not containing the entire epitope did not induce proliferation. Also, PBMC stimulated in bulk culture with noninfectious D4V antigen lysed autologous target cells pulsed with peptides containing aa 84 to 92. These results indicate that this donor exhibits memory CD4+ T-cell responses directed against the DV capsid protein and suggest that the response to the capsid protein is dominant not only in vitro at the clonal level but in bulk culture responses as well. Since previous studies have indicated that the CTL responses to DV infection seem to be directed mainly against the envelope (E) and NS3 proteins, these results are the first to indicate that the DV capsid protein is also a target of the antiviral T-cell response.

Full Text

The Full Text of this article is available as a PDF (233.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arvin A. M., Sharp M., Smith S., Koropchak C. M., Diaz P. S., Kinchington P., Ruyechan W., Hay J. Equivalent recognition of a varicella-zoster virus immediate early protein (IE62) and glycoprotein I by cytotoxic T lymphocytes of either CD4+ or CD8+ phenotype. J Immunol. 1991 Jan 1;146(1):257–264. [PubMed] [Google Scholar]
  2. Baenziger J., Hengartner H., Zinkernagel R. M., Cole G. A. Induction or prevention of immunopathological disease by cloned cytotoxic T cell lines specific for lymphocytic choriomeningitis virus. Eur J Immunol. 1986 Apr;16(4):387–393. doi: 10.1002/eji.1830160413. [DOI] [PubMed] [Google Scholar]
  3. Bukowski J. F., Kurane I., Lai C. J., Bray M., Falgout B., Ennis F. A. Dengue virus-specific cross-reactive CD8+ human cytotoxic T lymphocytes. J Virol. 1989 Dec;63(12):5086–5091. doi: 10.1128/jvi.63.12.5086-5091.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Burke D. S., Nisalak A., Johnson D. E., Scott R. M. A prospective study of dengue infections in Bangkok. Am J Trop Med Hyg. 1988 Jan;38(1):172–180. doi: 10.4269/ajtmh.1988.38.172. [DOI] [PubMed] [Google Scholar]
  5. Cannon M. J., Openshaw P. J., Askonas B. A. Cytotoxic T cells clear virus but augment lung pathology in mice infected with respiratory syncytial virus. J Exp Med. 1988 Sep 1;168(3):1163–1168. doi: 10.1084/jem.168.3.1163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Curiel T. J., Wong J. T., Gorczyca P. F., Schooley R. T., Walker B. D. CD4+ human immunodeficiency virus type 1 (HIV-1) envelope-specific cytotoxic T lymphocytes derived from the peripheral blood cells of an HIV-1-infected individual. AIDS Res Hum Retroviruses. 1993 Jan;9(1):61–68. doi: 10.1089/aid.1993.9.61. [DOI] [PubMed] [Google Scholar]
  7. Dai L. C., West K., Littaua R., Takahashi K., Ennis F. A. Mutation of human immunodeficiency virus type 1 at amino acid 585 on gp41 results in loss of killing by CD8+ A24-restricted cytotoxic T lymphocytes. J Virol. 1992 May;66(5):3151–3154. doi: 10.1128/jvi.66.5.3151-3154.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Eckels K. H., Dubois D. R., Summers P. L., Schlesinger J. J., Shelly M., Cohen S., Zhang Y. M., Lai C. J., Kurane I., Rothman A. Immunization of monkeys with baculovirus-dengue type-4 recombinants containing envelope and nonstructural proteins: evidence of priming and partial protection. Am J Trop Med Hyg. 1994 Apr;50(4):472–478. doi: 10.4269/ajtmh.1994.50.472. [DOI] [PubMed] [Google Scholar]
  9. Fossum B., Gedde-Dahl T., 3rd, Hansen T., Eriksen J. A., Thorsby E., Gaudernack G. Overlapping epitopes encompassing a point mutation (12 Gly-->Arg) in p21 ras can be recognized by HLA-DR, -DP and -DQ restricted T cells. Eur J Immunol. 1993 Oct;23(10):2687–2691. doi: 10.1002/eji.1830231045. [DOI] [PubMed] [Google Scholar]
  10. Green S., Kurane I., Edelman R., Tacket C. O., Eckels K. H., Vaughn D. W., Hoke C. H., Jr, Ennis F. A. Dengue virus-specific human CD4+ T-lymphocyte responses in a recipient of an experimental live-attenuated dengue virus type 1 vaccine: bulk culture proliferation, clonal analysis, and precursor frequency determination. J Virol. 1993 Oct;67(10):5962–5967. doi: 10.1128/jvi.67.10.5962-5967.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Halstead S. B. Pathogenesis of dengue: challenges to molecular biology. Science. 1988 Jan 29;239(4839):476–481. doi: 10.1126/science.3277268. [DOI] [PubMed] [Google Scholar]
  12. Halstead S. B. The Alexander D. Langmuir Lecture. The pathogenesis of dengue. Molecular epidemiology in infectious disease. Am J Epidemiol. 1981 Nov;114(5):632–648. doi: 10.1093/oxfordjournals.aje.a113235. [DOI] [PubMed] [Google Scholar]
  13. Henchal E. A., Putnak J. R. The dengue viruses. Clin Microbiol Rev. 1990 Oct;3(4):376–396. doi: 10.1128/cmr.3.4.376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hoke C. H., Jr, Malinoski F. J., Eckels K. H., Scott R. M., Dubois D. R., Summers P. L., Simms T., Burrous J., Hasty S. E., Bancroft W. H. Preparation of an attenuated dengue 4 (341750 Carib) virus vaccine. II. Safety and immunogenicity in humans. Am J Trop Med Hyg. 1990 Aug;43(2):219–226. doi: 10.4269/ajtmh.1990.43.219. [DOI] [PubMed] [Google Scholar]
  15. Irie K., Mohan P. M., Sasaguri Y., Putnak R., Padmanabhan R. Sequence analysis of cloned dengue virus type 2 genome (New Guinea-C strain). Gene. 1989 Feb 20;75(2):197–211. doi: 10.1016/0378-1119(89)90266-7. [DOI] [PubMed] [Google Scholar]
  16. Kilgus J., Jardetzky T., Gorga J. C., Trzeciak A., Gillessen D., Sinigaglia F. Analysis of the permissive association of a malaria T cell epitope with DR molecules. J Immunol. 1991 Jan 1;146(1):307–315. [PubMed] [Google Scholar]
  17. Kourí G., Guzmán M. G., Bravo J. Hemorrhagic dengue in Cuba: history of an epidemic. Bull Pan Am Health Organ. 1986;20(1):24–30. [PubMed] [Google Scholar]
  18. Kurane I., Brinton M. A., Samson A. L., Ennis F. A. Dengue virus-specific, human CD4+ CD8- cytotoxic T-cell clones: multiple patterns of virus cross-reactivity recognized by NS3-specific T-cell clones. J Virol. 1991 Apr;65(4):1823–1828. doi: 10.1128/jvi.65.4.1823-1828.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kurane I., Ennis F. E. Immunity and immunopathology in dengue virus infections. Semin Immunol. 1992 Apr;4(2):121–127. [PubMed] [Google Scholar]
  20. Kurane I., Hebblewaite D., Brandt W. E., Ennis F. A. Lysis of dengue virus-infected cells by natural cell-mediated cytotoxicity and antibody-dependent cell-mediated cytotoxicity. J Virol. 1984 Oct;52(1):223–230. doi: 10.1128/jvi.52.1.223-230.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kurane I., Innis B. L., Nimmannitya S., Nisalak A., Meager A., Janus J., Ennis F. A. Activation of T lymphocytes in dengue virus infections. High levels of soluble interleukin 2 receptor, soluble CD4, soluble CD8, interleukin 2, and interferon-gamma in sera of children with dengue. J Clin Invest. 1991 Nov;88(5):1473–1480. doi: 10.1172/JCI115457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kurane I., Innis B. L., Nisalak A., Hoke C., Nimmannitya S., Meager A., Ennis F. A. Human T cell responses to dengue virus antigens. Proliferative responses and interferon gamma production. J Clin Invest. 1989 Feb;83(2):506–513. doi: 10.1172/JCI113911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kurane I., Meager A., Ennis F. A. Dengue virus-specific human T cell clones. Serotype crossreactive proliferation, interferon gamma production, and cytotoxic activity. J Exp Med. 1989 Sep 1;170(3):763–775. doi: 10.1084/jem.170.3.763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Livingston P. G., Kurane I., Dai L. C., Okamoto Y., Lai C. J., Men R., Karaki S., Takiguchi M., Ennis F. A. Dengue virus-specific, HLA-B35-restricted, human CD8+ cytotoxic T lymphocyte (CTL) clones. Recognition of NS3 amino acids 500 to 508 by CTL clones of two different serotype specificities. J Immunol. 1995 Feb 1;154(3):1287–1295. [PubMed] [Google Scholar]
  25. Livingston P. G., Kurane I., Lai C. J., Bray M., Ennis F. A. Recognition of envelope protein by dengue virus serotype-specific human CD4+ CD8- cytotoxic T-cell clones. J Virol. 1994 May;68(5):3283–3288. doi: 10.1128/jvi.68.5.3283-3288.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Marchette N. J., Dubois D. R., Larsen L. K., Summers P. L., Kraiselburd E. G., Gubler D. J., Eckels K. H. Preparation of an attenuated dengue 4 (341750 Carib) virus vaccine. I. Pre-clinical studies. Am J Trop Med Hyg. 1990 Aug;43(2):212–218. doi: 10.4269/ajtmh.1990.43.212. [DOI] [PubMed] [Google Scholar]
  27. Mason P. W., McAda P. C., Mason T. L., Fournier M. J. Sequence of the dengue-1 virus genome in the region encoding the three structural proteins and the major nonstructural protein NS1. Virology. 1987 Nov;161(1):262–267. doi: 10.1016/0042-6822(87)90196-6. [DOI] [PubMed] [Google Scholar]
  28. Mogensen C. E. The glomerular permeability determined by dextran clearance using Sephadex gel filtration. Scand J Clin Lab Invest. 1968;21(1):77–82. doi: 10.3109/00365516809076979. [DOI] [PubMed] [Google Scholar]
  29. Newell C. K., Martin S., Sendele D., Mercadal C. M., Rouse B. T. Herpes simplex virus-induced stromal keratitis: role of T-lymphocyte subsets in immunopathology. J Virol. 1989 Feb;63(2):769–775. doi: 10.1128/jvi.63.2.769-775.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Osatomi K., Sumiyoshi H. Complete nucleotide sequence of dengue type 3 virus genome RNA. Virology. 1990 Jun;176(2):643–647. doi: 10.1016/0042-6822(90)90037-r. [DOI] [PubMed] [Google Scholar]
  31. Panina-Bordignon P., Tan A., Termijtelen A., Demotz S., Corradin G., Lanzavecchia A. Universally immunogenic T cell epitopes: promiscuous binding to human MHC class II and promiscuous recognition by T cells. Eur J Immunol. 1989 Dec;19(12):2237–2242. doi: 10.1002/eji.1830191209. [DOI] [PubMed] [Google Scholar]
  32. Rothman A. L., Kurane I., Lai C. J., Bray M., Falgout B., Men R., Ennis F. A. Dengue virus protein recognition by virus-specific murine CD8+ cytotoxic T lymphocytes. J Virol. 1993 Feb;67(2):801–806. doi: 10.1128/jvi.67.2.801-806.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sly W. S., Sekhon G. S., Kennett R., Bodmer W. F., Bodmer J. Permanent lymphoid lines from genetically marked lymphocytes: success with lymphocytes recovered from frozen storage. Tissue Antigens. 1976 Mar;7(3):165–172. doi: 10.1111/j.1399-0039.1976.tb01047.x. [DOI] [PubMed] [Google Scholar]
  34. Sprent J., Surh C. D., Agus D., Hurd M., Sutton S., Heath W. R. Profound atrophy of the bone marrow reflecting major histocompatibility complex class II-restricted destruction of stem cells by CD4+ cells. J Exp Med. 1994 Jul 1;180(1):307–317. doi: 10.1084/jem.180.1.307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Takahashi K., Dai L. C., Fuerst T. R., Biddison W. E., Earl P. L., Moss B., Ennis F. A. Specific lysis of human immunodeficiency virus type 1-infected cells by a HLA-A3.1-restricted CD8+ cytotoxic T-lymphocyte clone that recognizes a conserved peptide sequence within the gp41 subunit of the envelope protein. Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):10277–10281. doi: 10.1073/pnas.88.22.10277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Zhang Y. M., Hayes E. P., McCarty T. C., Dubois D. R., Summers P. L., Eckels K. H., Chanock R. M., Lai C. J. Immunization of mice with dengue structural proteins and nonstructural protein NS1 expressed by baculovirus recombinant induces resistance to dengue virus encephalitis. J Virol. 1988 Aug;62(8):3027–3031. doi: 10.1128/jvi.62.8.3027-3031.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Zhao B., Mackow E., Buckler-White A., Markoff L., Chanock R. M., Lai C. J., Makino Y. Cloning full-length dengue type 4 viral DNA sequences: analysis of genes coding for structural proteins. Virology. 1986 Nov;155(1):77–88. doi: 10.1016/0042-6822(86)90169-8. [DOI] [PubMed] [Google Scholar]
  38. Zivny J., Kurane I., Tacket C. O., Edelman R., Ennis F. A. Dengue virus-specific, human CD4+ cytotoxic T lymphocytes generated in short-term culture. Viral Immunol. 1993 Summer;6(2):143–151. doi: 10.1089/vim.1993.6.143. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES