Abstract
Recently, it has been observed that the infection of human target cells with certain measles virus (MV) strains leads to the downregulation of the major MV receptor CD46. Here we report that CD46 downregulation can be rapidly induced in uninfected cells after surface contact with MV particles or MV-infected cells. Receptor modulation is detectable after 30 min of cocultivation of uninfected cells with MV-infected cells and is complete after 2 to 4 h, a time after which newly synthesized MV hemagglutinin (MV-H) cannot be detected in freshly infected target cells. This contact-mediated receptor modulation is also induced by recombinant MV-H expressed by vaccinia virus and is inhibitable with antibodies against CD46 and MV-H. By titrating the effect with MV Edmonston strain-infected cells, a significant contact-mediated CD46 modulation was detectable up to a ratio of 1 infected to 64 uninfected cells. As a result of CD46 downregulation, an increased susceptibility of uninfected cells for complement-mediated lysis was observed. This phenomenon, however, is MV strain dependent, as observed for the downregulation of CD46 after MV infection. These data suggest that in acute measles or following measles vaccination, uninfected cells might also be destroyed by complement after contacting an MV-infected cell.
Full Text
The Full Text of this article is available as a PDF (252.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aiken C., Konner J., Landau N. R., Lenburg M. E., Trono D. Nef induces CD4 endocytosis: requirement for a critical dileucine motif in the membrane-proximal CD4 cytoplasmic domain. Cell. 1994 Mar 11;76(5):853–864. doi: 10.1016/0092-8674(94)90360-3. [DOI] [PubMed] [Google Scholar]
- Albrecht P., Lorenz D., Klutch M. J., Vickers J. H., Ennis F. A. Fatal measles infection in marmosets pathogenesis and prophylaxis. Infect Immun. 1980 Mar;27(3):969–978. doi: 10.1128/iai.27.3.969-978.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Borrow P., Oldstone M. B. Measles virus-mononuclear cell interactions. Curr Top Microbiol Immunol. 1995;191:85–100. doi: 10.1007/978-3-642-78621-1_6. [DOI] [PubMed] [Google Scholar]
- Cole J. A., McCarthy S. A., Rees M. A., Sharrow S. O., Singer A. Cell surface comodulation of CD4 and T cell receptor by anti-CD4 monoclonal antibody. J Immunol. 1989 Jul 15;143(2):397–402. [PubMed] [Google Scholar]
- Dalgleish A. G., Beverley P. C., Clapham P. R., Crawford D. H., Greaves M. F., Weiss R. A. The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature. 1984 Dec 20;312(5996):763–767. doi: 10.1038/312763a0. [DOI] [PubMed] [Google Scholar]
- Dunster L. M., Schneider-Schaulies J., Dehoff M. H., Holers V. M., Schwartz-Albiez R., ter Meulen V. Moesin, and not the murine functional homologue (Crry/p65) of human membrane cofactor protein (CD46), is involved in the entry of measles virus (strain Edmonston) into susceptible murine cell lines. J Gen Virol. 1995 Aug;76(Pt 8):2085–2089. doi: 10.1099/0022-1317-76-8-2085. [DOI] [PubMed] [Google Scholar]
- Dunster L. M., Schneider-Schaulies J., Löffler S., Lankes W., Schwartz-Albiez R., Lottspeich F., ter Meulen V. Moesin: a cell membrane protein linked with susceptibility to measles virus infection. Virology. 1994 Jan;198(1):265–274. doi: 10.1006/viro.1994.1029. [DOI] [PubMed] [Google Scholar]
- Dörig R. E., Marcil A., Chopra A., Richardson C. D. The human CD46 molecule is a receptor for measles virus (Edmonston strain). Cell. 1993 Oct 22;75(2):295–305. doi: 10.1016/0092-8674(93)80071-l. [DOI] [PubMed] [Google Scholar]
- Esiri M. M., Oppenheimer D. R., Brownell B., Haire M. Distribution of measles antigen and immunoglobulin-containing cells in the CNS in subacute sclerosing panencephalitis (SSPE) and atypical measles encephalitis. J Neurol Sci. 1982 Jan;53(1):29–43. doi: 10.1016/0022-510x(82)90078-8. [DOI] [PubMed] [Google Scholar]
- Esolen L. M., Park S. W., Hardwick J. M., Griffin D. E. Apoptosis as a cause of death in measles virus-infected cells. J Virol. 1995 Jun;69(6):3955–3958. doi: 10.1128/jvi.69.6.3955-3958.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gerlier D., Loveland B., Varior-Krishnan G., Thorley B., McKenzie I. F., Rabourdin-Combe C. Measles virus receptor properties are shared by several CD46 isoforms differing in extracellular regions and cytoplasmic tails. J Gen Virol. 1994 Sep;75(Pt 9):2163–2171. doi: 10.1099/0022-1317-75-9-2163. [DOI] [PubMed] [Google Scholar]
- Griffin D. E. Immune responses during measles virus infection. Curr Top Microbiol Immunol. 1995;191:117–134. doi: 10.1007/978-3-642-78621-1_8. [DOI] [PubMed] [Google Scholar]
- Guy B., Kieny M. P., Riviere Y., Le Peuch C., Dott K., Girard M., Montagnier L., Lecocq J. P. HIV F/3' orf encodes a phosphorylated GTP-binding protein resembling an oncogene product. Nature. 1987 Nov 19;330(6145):266–269. doi: 10.1038/330266a0. [DOI] [PubMed] [Google Scholar]
- Hoxie J. A., Alpers J. D., Rackowski J. L., Huebner K., Haggarty B. S., Cedarbaum A. J., Reed J. C. Alterations in T4 (CD4) protein and mRNA synthesis in cells infected with HIV. Science. 1986 Nov 28;234(4780):1123–1127. doi: 10.1126/science.3095925. [DOI] [PubMed] [Google Scholar]
- Iwata K., Seya T., Ueda S., Ariga H., Nagasawa S. Modulation of complement regulatory function and measles virus receptor function by the serine-threonine-rich domains of membrane cofactor protein (CD46). Biochem J. 1994 Nov 15;304(Pt 1):169–175. doi: 10.1042/bj3040169. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jabbar M. A., Nayak D. P. Intracellular interaction of human immunodeficiency virus type 1 (ARV-2) envelope glycoprotein gp160 with CD4 blocks the movement and maturation of CD4 to the plasma membrane. J Virol. 1990 Dec;64(12):6297–6304. doi: 10.1128/jvi.64.12.6297-6304.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kirk J., Zhou A. L., McQuaid S., Cosby S. L., Allen I. V. Cerebral endothelial cell infection by measles virus in subacute sclerosing panencephalitis: ultrastructural and in situ hybridization evidence. Neuropathol Appl Neurobiol. 1991 Aug;17(4):289–297. doi: 10.1111/j.1365-2990.1991.tb00726.x. [DOI] [PubMed] [Google Scholar]
- Klatzmann D., Champagne E., Chamaret S., Gruest J., Guetard D., Hercend T., Gluckman J. C., Montagnier L. T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV. Nature. 1984 Dec 20;312(5996):767–768. doi: 10.1038/312767a0. [DOI] [PubMed] [Google Scholar]
- Liszewski M. K., Post T. W., Atkinson J. P. Membrane cofactor protein (MCP or CD46): newest member of the regulators of complement activation gene cluster. Annu Rev Immunol. 1991;9:431–455. doi: 10.1146/annurev.iy.09.040191.002243. [DOI] [PubMed] [Google Scholar]
- Loveland B. E., Johnstone R. W., Russell S. M., Thorley B. R., McKenzie I. F. Different membrane cofactor protein (CD46) isoforms protect transfected cells against antibody and complement mediated lysis. Transpl Immunol. 1993;1(2):101–108. doi: 10.1016/0966-3274(93)90002-p. [DOI] [PubMed] [Google Scholar]
- Lusso P., Secchiero P., Crowley R. W., Garzino-Demo A., Berneman Z. N., Gallo R. C. CD4 is a critical component of the receptor for human herpesvirus 7: interference with human immunodeficiency virus. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3872–3876. doi: 10.1073/pnas.91.9.3872. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maisner A., Schneider-Schaulies J., Liszewski M. K., Atkinson J. P., Herrler G. Binding of measles virus to membrane cofactor protein (CD46): importance of disulfide bonds and N-glycans for the receptor function. J Virol. 1994 Oct;68(10):6299–6304. doi: 10.1128/jvi.68.10.6299-6304.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Manchester M., Liszewski M. K., Atkinson J. P., Oldstone M. B. Multiple isoforms of CD46 (membrane cofactor protein) serve as receptors for measles virus. Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):2161–2165. doi: 10.1073/pnas.91.6.2161. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Manchester M., Valsamakis A., Kaufman R., Liszewski M. K., Alvarez J., Atkinson J. P., Lublin D. M., Oldstone M. B. Measles virus and C3 binding sites are distinct on membrane cofactor protein (CD46). Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):2303–2307. doi: 10.1073/pnas.92.6.2303. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McChesney M. B., Oldstone M. B. Viruses perturb lymphocyte functions: selected principles characterizing virus-induced immunosuppression. Annu Rev Immunol. 1987;5:279–304. doi: 10.1146/annurev.iy.05.040187.001431. [DOI] [PubMed] [Google Scholar]
- Moench T. R., Griffin D. E., Obriecht C. R., Vaisberg A. J., Johnson R. T. Acute measles in patients with and without neurological involvement: distribution of measles virus antigen and RNA. J Infect Dis. 1988 Aug;158(2):433–442. doi: 10.1093/infdis/158.2.433. [DOI] [PubMed] [Google Scholar]
- Nakayama T., Mori T., Yamaguchi S., Sonoda S., Asamura S., Yamashita R., Takeuchi Y., Urano T. Detection of measles virus genome directly from clinical samples by reverse transcriptase-polymerase chain reaction and genetic variability. Virus Res. 1995 Jan;35(1):1–16. doi: 10.1016/0168-1702(94)00074-m. [DOI] [PubMed] [Google Scholar]
- Naniche D., Varior-Krishnan G., Cervoni F., Wild T. F., Rossi B., Rabourdin-Combe C., Gerlier D. Human membrane cofactor protein (CD46) acts as a cellular receptor for measles virus. J Virol. 1993 Oct;67(10):6025–6032. doi: 10.1128/jvi.67.10.6025-6032.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Naniche D., Wild T. F., Rabourdin-Combe C., Gerlier D. Measles virus haemagglutinin induces down-regulation of gp57/67, a molecule involved in virus binding. J Gen Virol. 1993 Jun;74(Pt 6):1073–1079. doi: 10.1099/0022-1317-74-6-1073. [DOI] [PubMed] [Google Scholar]
- Pelchen-Matthews A., Parsons I. J., Marsh M. Phorbol ester-induced downregulation of CD4 is a multistep process involving dissociation from p56lck, increased association with clathrin-coated pits, and altered endosomal sorting. J Exp Med. 1993 Oct 1;178(4):1209–1222. doi: 10.1084/jem.178.4.1209. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raja N. U., Vincent M. J., abdul Jabbar M. Vpu-mediated proteolysis of gp160/CD4 chimeric envelope glycoproteins in the endoplasmic reticulum: requirement of both the anchor and cytoplasmic domains of CD4. Virology. 1994 Oct;204(1):357–366. doi: 10.1006/viro.1994.1540. [DOI] [PubMed] [Google Scholar]
- Rima B. K., Earle J. A., Yeo R. P., Herlihy L., Baczko K., ter Meulen V., Carabaña J., Caballero M., Celma M. L., Fernandez-Muñoz R. Temporal and geographical distribution of measles virus genotypes. J Gen Virol. 1995 May;76(Pt 5):1173–1180. doi: 10.1099/0022-1317-76-5-1173. [DOI] [PubMed] [Google Scholar]
- Sanchez-Lanier M., Guerin P., McLaren L. C., Bankhurst A. D. Measles virus-induced suppression of lymphocyte proliferation. Cell Immunol. 1988 Oct 15;116(2):367–381. doi: 10.1016/0008-8749(88)90238-9. [DOI] [PubMed] [Google Scholar]
- Schneider-Schaulies J., Dunster L. M., Kobune F., Rima B., ter Meulen V. Differential downregulation of CD46 by measles virus strains. J Virol. 1995 Nov;69(11):7257–7259. doi: 10.1128/jvi.69.11.7257-7259.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schneider-Schaulies J., Dunster L. M., Schwartz-Albiez R., Krohne G., ter Meulen V. Physical association of moesin and CD46 as a receptor complex for measles virus. J Virol. 1995 Apr;69(4):2248–2256. doi: 10.1128/jvi.69.4.2248-2256.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schneider-Schaulies J., Schneider-Schaulies S., Ter Meulen V. Differential induction of cytokines by primary and persistent measles virus infections in human glial cells. Virology. 1993 Jul;195(1):219–228. doi: 10.1006/viro.1993.1363. [DOI] [PubMed] [Google Scholar]
- Schneider-Schaulies J., Schnorr J. J., Brinckmann U., Dunster L. M., Baczko K., Liebert U. G., Schneider-Schaulies S., ter Meulen V. Receptor usage and differential downregulation of CD46 by measles virus wild-type and vaccine strains. Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):3943–3947. doi: 10.1073/pnas.92.9.3943. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schneider-Schaulies S., Kreth H. W., Hofmann G., Billeter M., Ter Meulen V. Expression of measles virus RNA in peripheral blood mononuclear cells of patients with measles, SSPE, and autoimmune diseases. Virology. 1991 Jun;182(2):703–711. doi: 10.1016/0042-6822(91)90611-e. [DOI] [PubMed] [Google Scholar]
- Schnorr J. J., Dunster L. M., Nanan R., Schneider-Schaulies J., Schneider-Schaulies S., ter Meulen V. Measles virus-induced down-regulation of CD46 is associated with enhanced sensitivity to complement-mediated lysis of infected cells. Eur J Immunol. 1995 Apr;25(4):976–984. doi: 10.1002/eji.1830250418. [DOI] [PubMed] [Google Scholar]
- Schnorr J. J., Schneider-Schaulies S., Simon-Jödicke A., Pavlovic J., Horisberger M. A., ter Meulen V. MxA-dependent inhibition of measles virus glycoprotein synthesis in a stably transfected human monocytic cell line. J Virol. 1993 Aug;67(8):4760–4768. doi: 10.1128/jvi.67.8.4760-4768.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stevenson M., Meier C., Mann A. M., Chapman N., Wasiak A. Envelope glycoprotein of HIV induces interference and cytolysis resistance in CD4+ cells: mechanism for persistence in AIDS. Cell. 1988 May 6;53(3):483–496. doi: 10.1016/0092-8674(88)90168-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tamin A., Rota P. A., Wang Z. D., Heath J. L., Anderson L. J., Bellini W. J. Antigenic analysis of current wild type and vaccine strains of measles virus. J Infect Dis. 1994 Oct;170(4):795–801. doi: 10.1093/infdis/170.4.795. [DOI] [PubMed] [Google Scholar]
- Thuillier L., Selz F., Métézeau P., Pérignon J. L. The activation of protein kinase C is not necessary for the monoclonal antibody-induced modulation of CD3 and CD4 antigens. Eur J Immunol. 1990 May;20(5):1197–1200. doi: 10.1002/eji.1830200539. [DOI] [PubMed] [Google Scholar]
- Varior-Krishnan G., Trescol-Biémont M. C., Naniche D., Rabourdin-Combe C., Gerlier D. Glycosyl-phosphatidylinositol-anchored and transmembrane forms of CD46 display similar measles virus receptor properties: virus binding, fusion, and replication; down-regulation by hemagglutinin; and virus uptake and endocytosis for antigen presentation by major histocompatibility complex class II molecules. J Virol. 1994 Dec;68(12):7891–7899. doi: 10.1128/jvi.68.12.7891-7899.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vincent M. J., Raja N. U., Jabbar M. A. Human immunodeficiency virus type 1 Vpu protein induces degradation of chimeric envelope glycoproteins bearing the cytoplasmic and anchor domains of CD4: role of the cytoplasmic domain in Vpu-induced degradation in the endoplasmic reticulum. J Virol. 1993 Sep;67(9):5538–5549. doi: 10.1128/jvi.67.9.5538-5549.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ward B. J., Griffin D. E. Changes in cytokine production after measles virus vaccination: predominant production of IL-4 suggests induction of a Th2 response. Clin Immunol Immunopathol. 1993 May;67(2):171–177. doi: 10.1006/clin.1993.1061. [DOI] [PubMed] [Google Scholar]
- Wild T. F., Bernard A., Spehner D., Drillien R. Construction of vaccinia virus recombinants expressing several measles virus proteins and analysis of their efficacy in vaccination of mice. J Gen Virol. 1992 Feb;73(Pt 2):359–367. doi: 10.1099/0022-1317-73-2-359. [DOI] [PubMed] [Google Scholar]
- Wild T. F., Malvoisin E., Buckland R. Measles virus: both the haemagglutinin and fusion glycoproteins are required for fusion. J Gen Virol. 1991 Feb;72(Pt 2):439–442. doi: 10.1099/0022-1317-72-2-439. [DOI] [PubMed] [Google Scholar]
- Yanagi Y., Cubitt B. A., Oldstone M. B. Measles virus inhibits mitogen-induced T cell proliferation but does not directly perturb the T cell activation process inside the cell. Virology. 1992 Mar;187(1):280–289. doi: 10.1016/0042-6822(92)90316-h. [DOI] [PubMed] [Google Scholar]