Abstract
The structural glycoprotein E0 of classical swine fever virus (CSFV) possesses an intrinsic RNase activity. Here we present the first comprehensive biochemical characterization of E0, using a recombinant glycoprotein expressed in insect cells. We were able to show that the presence of neither carbohydrate moieties nor disulfide bonds is a prerequisite for RNase activity. In addition, virus-neutralizing and nonneutralizing anti-E0 monoclonal antibodies were tested for their ability to influence RNase activity. In these experiments, the antibodies which effectively blocked the infection of STE cells also exerted a high degree of E0 RNase inhibition. This correlation suggests that the RNase activity of CSFV E0 plays a role in the viral life cycle.
Full Text
The Full Text of this article is available as a PDF (263.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Benner S. A., Allemann R. K. The return of pancreatic ribonucleases. Trends Biochem Sci. 1989 Oct;14(10):396–397. doi: 10.1016/0968-0004(89)90282-x. [DOI] [PubMed] [Google Scholar]
- D'Alessio G., Di Donato A., Parente A., Piccoli R. Seminal RNase: a unique member of the ribonuclease superfamily. Trends Biochem Sci. 1991 Mar;16(3):104–106. doi: 10.1016/0968-0004(91)90042-t. [DOI] [PubMed] [Google Scholar]
- Deutscher M. P. Ribonuclease multiplicity, diversity, and complexity. J Biol Chem. 1993 Jun 25;268(18):13011–13014. [PubMed] [Google Scholar]
- Giraud A., Franc J. L., Long Y., Ruf J. Effects of deglycosylation of human thyroperoxidase on its enzymatic activity and immunoreactivity. J Endocrinol. 1992 Feb;132(2):317–323. doi: 10.1677/joe.0.1320317. [DOI] [PubMed] [Google Scholar]
- Harosh I., Mezzina M., Harris P. V., Boyd J. B. Purification and characterization of a mitochondrial endonuclease from Drosophila melanogaster embryos. Eur J Biochem. 1992 Dec 1;210(2):455–460. doi: 10.1111/j.1432-1033.1992.tb17442.x. [DOI] [PubMed] [Google Scholar]
- Heinz F. X. Comparative molecular biology of flaviviruses and hepatitis C virus. Arch Virol Suppl. 1992;4:163–171. doi: 10.1007/978-3-7091-5633-9_35. [DOI] [PubMed] [Google Scholar]
- Hulst M. M., Himes G., Newbigin E., Moormann R. J. Glycoprotein E2 of classical swine fever virus: expression in insect cells and identification as a ribonuclease. Virology. 1994 May 1;200(2):558–565. doi: 10.1006/viro.1994.1218. [DOI] [PubMed] [Google Scholar]
- Hulst M. M., Westra D. F., Wensvoort G., Moormann R. J. Glycoprotein E1 of hog cholera virus expressed in insect cells protects swine from hog cholera. J Virol. 1993 Sep;67(9):5435–5442. doi: 10.1128/jvi.67.9.5435-5442.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jermann T. M., Opitz J. G., Stackhouse J., Benner S. A. Reconstructing the evolutionary history of the artiodactyl ribonuclease superfamily. Nature. 1995 Mar 2;374(6517):57–59. doi: 10.1038/374057a0. [DOI] [PubMed] [Google Scholar]
- Kawata Y., Sakiyama F., Tamaoki H. Amino-acid sequence of ribonuclease T2 from Aspergillus oryzae. Eur J Biochem. 1988 Oct 1;176(3):683–697. doi: 10.1111/j.1432-1033.1988.tb14331.x. [DOI] [PubMed] [Google Scholar]
- König M., Lengsfeld T., Pauly T., Stark R., Thiel H. J. Classical swine fever virus: independent induction of protective immunity by two structural glycoproteins. J Virol. 1995 Oct;69(10):6479–6486. doi: 10.1128/jvi.69.10.6479-6486.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li H. L., Chelladurai B. S., Zhang K., Nicholson A. W. Ribonuclease III cleavage of a bacteriophage T7 processing signal. Divalent cation specificity, and specific anion effects. Nucleic Acids Res. 1993 Apr 25;21(8):1919–1925. doi: 10.1093/nar/21.8.1919. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Libonati M., Sorrentino S. Revisiting the action of bovine ribonuclease A and pancreatic-type ribonucleases on double-stranded RNA. Mol Cell Biochem. 1992 Nov 18;117(2):139–151. doi: 10.1007/BF00230753. [DOI] [PubMed] [Google Scholar]
- Meyers G., Rümenapf T., Thiel H. J. Molecular cloning and nucleotide sequence of the genome of hog cholera virus. Virology. 1989 Aug;171(2):555–567. doi: 10.1016/0042-6822(89)90625-9. [DOI] [PubMed] [Google Scholar]
- Meyers G., Thiel H. J. Cytopathogenicity of classical swine fever virus caused by defective interfering particles. J Virol. 1995 Jun;69(6):3683–3689. doi: 10.1128/jvi.69.6.3683-3689.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moennig V., Plagemann P. G. The pestiviruses. Adv Virus Res. 1992;41:53–98. doi: 10.1016/s0065-3527(08)60035-4. [DOI] [PubMed] [Google Scholar]
- Moennig V. The hog cholera virus. Comp Immunol Microbiol Infect Dis. 1992 Jul;15(3):189–201. doi: 10.1016/0147-9571(92)90092-6. [DOI] [PubMed] [Google Scholar]
- Moormann R. J., Warmerdam P. A., van der Meer B., Schaaper W. M., Wensvoort G., Hulst M. M. Molecular cloning and nucleotide sequence of hog cholera virus strain Brescia and mapping of the genomic region encoding envelope protein E1. Virology. 1990 Jul;177(1):184–198. doi: 10.1016/0042-6822(90)90472-4. [DOI] [PubMed] [Google Scholar]
- Royo J., Kunz C., Kowyama Y., Anderson M., Clarke A. E., Newbigin E. Loss of a histidine residue at the active site of S-locus ribonuclease is associated with self-compatibility in Lycopersicon peruvianum. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6511–6514. doi: 10.1073/pnas.91.14.6511. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rümenapf T., Meyers G., Stark R., Thiel H. J. Hog cholera virus--characterization of specific antiserum and identification of cDNA clones. Virology. 1989 Jul;171(1):18–27. doi: 10.1016/0042-6822(89)90506-0. [DOI] [PubMed] [Google Scholar]
- Rümenapf T., Stark R., Meyers G., Thiel H. J. Structural proteins of hog cholera virus expressed by vaccinia virus: further characterization and induction of protective immunity. J Virol. 1991 Feb;65(2):589–597. doi: 10.1128/jvi.65.2.589-597.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rümenapf T., Unger G., Strauss J. H., Thiel H. J. Processing of the envelope glycoproteins of pestiviruses. J Virol. 1993 Jun;67(6):3288–3294. doi: 10.1128/jvi.67.6.3288-3294.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schneider R., Unger G., Stark R., Schneider-Scherzer E., Thiel H. J. Identification of a structural glycoprotein of an RNA virus as a ribonuclease. Science. 1993 Aug 27;261(5125):1169–1171. doi: 10.1126/science.8356450. [DOI] [PubMed] [Google Scholar]
- Sevcik J., Zegers I., Wyns L., Dauter Z., Wilson K. S. Complex of ribonuclease Sa with a cyclic nucleotide and a proposed model for the reaction intermediate. Eur J Biochem. 1993 Aug 15;216(1):301–305. doi: 10.1111/j.1432-1033.1993.tb18145.x. [DOI] [PubMed] [Google Scholar]
- Smith T. K., Meister A. Active deglycosylated mammalian gamma-glutamyl transpeptidase. FASEB J. 1994 Jun;8(9):661–664. doi: 10.1096/fasebj.8.9.7911768. [DOI] [PubMed] [Google Scholar]
- Stark R., Meyers G., Rümenapf T., Thiel H. J. Processing of pestivirus polyprotein: cleavage site between autoprotease and nucleocapsid protein of classical swine fever virus. J Virol. 1993 Dec;67(12):7088–7095. doi: 10.1128/jvi.67.12.7088-7095.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Terpstra C. Hog cholera: an update of present knowledge. Br Vet J. 1991 Sep-Oct;147(5):397–406. doi: 10.1016/0007-1935(91)90081-W. [DOI] [PubMed] [Google Scholar]
- Thiel H. J., Stark R., Meyers G., Weiland E., Rümenapf T. Proteins encoded in the 5' region of the pestivirus genome--considerations concerning taxonomy. Vet Microbiol. 1992 Nov;33(1-4):213–219. doi: 10.1016/0378-1135(92)90049-y. [DOI] [PubMed] [Google Scholar]
- Thiel H. J., Stark R., Weiland E., Rümenapf T., Meyers G. Hog cholera virus: molecular composition of virions from a pestivirus. J Virol. 1991 Sep;65(9):4705–4712. doi: 10.1128/jvi.65.9.4705-4712.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weiland E., Ahl R., Stark R., Weiland F., Thiel H. J. A second envelope glycoprotein mediates neutralization of a pestivirus, hog cholera virus. J Virol. 1992 Jun;66(6):3677–3682. doi: 10.1128/jvi.66.6.3677-3682.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weiland E., Stark R., Haas B., Rümenapf T., Meyers G., Thiel H. J. Pestivirus glycoprotein which induces neutralizing antibodies forms part of a disulfide-linked heterodimer. J Virol. 1990 Aug;64(8):3563–3569. doi: 10.1128/jvi.64.8.3563-3569.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wiskerchen M., Collett M. S. Pestivirus gene expression: protein p80 of bovine viral diarrhea virus is a proteinase involved in polyprotein processing. Virology. 1991 Sep;184(1):341–350. doi: 10.1016/0042-6822(91)90850-b. [DOI] [PubMed] [Google Scholar]
- van Zijl M., Wensvoort G., de Kluyver E., Hulst M., van der Gulden H., Gielkens A., Berns A., Moormann R. Live attenuated pseudorabies virus expressing envelope glycoprotein E1 of hog cholera virus protects swine against both pseudorabies and hog cholera. J Virol. 1991 May;65(5):2761–2765. doi: 10.1128/jvi.65.5.2761-2765.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]