Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1996 Jan;70(1):402–414. doi: 10.1128/jvi.70.1.402-414.1996

AKR.H-2b lymphocytes inhibit the secondary in vitro cytotoxic T-lymphocyte response of primed responder cells to AKR/Gross murine leukemia virus-induced tumor cell stimulation.

R F Rich 1, W R Green 1
PMCID: PMC189830  PMID: 8523554

Abstract

We have previously shown that AKR.H-2b congenic mice, though carrying the responder H-2b major histocompatibility complex haplotype, are unable to generate secondary cytolytic T-lymphocyte (CTL) responses specific for AKR/Gross murine leukemia virus (MuLV). Our published work has shown that this nonresponsive state is specific and not due to clonal deletion or irreversible functional inactivation of antiviral CTL precursors. In the present study, an alternative mechanism based on the presence of inhibitory AKR.H-2b cells was examined. Irradiated or mitomycin C-treated AKR.H-2b spleen cells function as in vitro stimulator cells in the generation of C57BL/6 (B6) anti-AKR/Gross virus CTL, consistent with their expression of viral antigens. In contrast, untreated viable AKR.H-2b spleen cells functioned very poorly as stimulators in vitro. Viable AKR.H-2b spleen cells were also able to cause dramatic (up to > or = 25-fold) inhibition of antiviral CTL responses stimulated in vitro by standard AKR/Gross MuLV-induced tumor cells. This inhibition was specific: AKR.H-2b modulator spleen cells did not inhibit allogeneic major histocompatibility complex-specific CTL production, even when a concurrent antiviral CTL response in the same culture well was inhibited by the modulator cells. These results and those of experiments in which either semipermeable membranes were used to separate AKR.H-2b modulator spleen cells from AKR/Gross MuLV-primed responder cells or the direct transfer of supernatants from wells where inhibition was demonstrated to wells where there was antiviral CTL responsiveness argued against a role for soluble factors as the cause of the inhibition. Rather, the inhibition was dependent on direct contact of AKR.H-2b cells in a dose-dependent manner with the responder cell population. Inhibition was shown not to be due to the ability of AKR.H-2b cells to function as unlabeled competitive target cells. Exogenous interleukin-2 added at the onset of the in vitro CTL-generating cultures partially restored the antiviral response that was decreased by AKR.H-2b spleen cells. Positive and negative cell selection studies and the development of inhibitory cell lines indicated that B lymphocytes and both CD4- CD8+ and CD4+ CD8- T lymphocytes from AKR.H-2b mice could inhibit the generation of AKR/Gross virus-specific CTL in vitro. AKR.H-2b macrophages were shown not to be required to demonstrate AKR/Gross MuLV-specific inhibition, however, confirming that the inhibition by T-cell (or B-cell)-depleted spleen populations was dependent on the enriched B-cell (T-cell) population per se.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text

The Full Text of this article is available as a PDF (321.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Azuma H., Phillips J. D., Green W. R. Clonal heterogeneity of anti-AKR/gross leukemia virus cytotoxic T lymphocytes. Evidence for two distinct antigen systems. J Immunol. 1987 Oct 1;139(7):2464–2473. [PubMed] [Google Scholar]
  2. Azuma H., Wegmann K. W., Green W. R. Correlations of in vivo growth of CTL-susceptible and -resistant variant tumor cell lines in CTL-responder AKR.H-2b:Fv-1b and -nonresponder AKR.H-2b mice. Cell Immunol. 1988 Oct 1;116(1):123–134. doi: 10.1016/0008-8749(88)90215-8. [DOI] [PubMed] [Google Scholar]
  3. Bertagnolli M. M., Lin B. Y., Young D., Herrmann S. H. IL-12 augments antigen-dependent proliferation of activated T lymphocytes. J Immunol. 1992 Dec 15;149(12):3778–3783. [PubMed] [Google Scholar]
  4. Coppola M. A., Green W. R. Cytotoxic T lymphocyte responses to the envelope proteins of endogenous ecotropic and mink cytopathic focus-forming murine leukemia viruses in H-2b mice. Virology. 1994 Jul;202(1):500–505. doi: 10.1006/viro.1994.1370. [DOI] [PubMed] [Google Scholar]
  5. Coppola M. A., Lam T. M., Strawbridge R. R., Green W. R. Recognition of endogenous ecotropic murine leukaemia viruses by anti-AKR/Gross virus cytotoxic T lymphocytes (CTL): epitope variation in a CTL-resistant virus. J Gen Virol. 1995 Mar;76(Pt 3):635–641. doi: 10.1099/0022-1317-76-3-635. [DOI] [PubMed] [Google Scholar]
  6. Fast L. D. Generation and characterization of IL-2-activated veto cells. J Immunol. 1992 Sep 1;149(5):1510–1515. [PubMed] [Google Scholar]
  7. Fink P. J., Shimonkevitz R. P., Bevan M. J. Veto cells. Annu Rev Immunol. 1988;6:115–137. doi: 10.1146/annurev.iy.06.040188.000555. [DOI] [PubMed] [Google Scholar]
  8. Green W. R. Cell surface expression of cytotoxic T lymphocyte-defined, AKR/Gross leukemia virus-associated tumor antigens by normal AKR.H-2b splenic B cells. J Immunol. 1983 Dec;131(6):3078–3084. [PubMed] [Google Scholar]
  9. Green W. R. Genetic control of the induction of cytolytic T lymphocyte responses to AKR/Gross viral leukemias. I. H-2-encoded dominant gene control. J Immunol. 1984 May;132(5):2658–2664. [PubMed] [Google Scholar]
  10. Green W. R., Graziano R. F. Cytolytic T lymphocyte-defined retroviral antigens on normal cells: encoding by the Akv-1 proviral locus. Immunogenetics. 1986;23(2):106–110. doi: 10.1007/BF00377969. [DOI] [PubMed] [Google Scholar]
  11. Green W. R. Induction of anti-AKR/gross virus cytolytic T lymphocytes in AKR.H-2b:Fv-1b congenic mice: age-dependent conversion to a nonresponder phenotype. J Immunol. 1987 Mar 1;138(5):1602–1606. [PubMed] [Google Scholar]
  12. Green W. R., Nowinski R. C., Henney C. S. Specificity of cytolytic T cells directed against AKR/Gross virus-induced syngeneic leukemias: antibodies directed against H-2K, but not against viral proteins, inhibit lysis. J Immunol. 1980 Aug;125(2):647–655. [PubMed] [Google Scholar]
  13. Hambor J. E., Kaplan D. R., Tykocinski M. L. CD8 functions as an inhibitory ligand in mediating the immunoregulatory activity of CD8+ cells. J Immunol. 1990 Sep 15;145(6):1646–1652. [PubMed] [Google Scholar]
  14. Hambor J. E., Weber M. C., Tykocinski M. L., Kaplan D. R. Regulation of allogeneic responses by expression of CD8 alpha chain on stimulator cells. Int Immunol. 1990;2(9):879–883. doi: 10.1093/intimm/2.9.879. [DOI] [PubMed] [Google Scholar]
  15. Heinzel F. P., Sadick M. D., Mutha S. S., Locksley R. M. Production of interferon gamma, interleukin 2, interleukin 4, and interleukin 10 by CD4+ lymphocytes in vivo during healing and progressive murine leishmaniasis. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7011–7015. doi: 10.1073/pnas.88.16.7011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hiruma K., Nakamura H., Henkart P. A., Gress R. E. Clonal deletion of postthymic T cells: veto cells kill precursor cytotoxic T lymphocytes. J Exp Med. 1992 Mar 1;175(3):863–868. doi: 10.1084/jem.175.3.863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hobbs M. V., Weigle W. O., Ernst D. N. Interleukin-10 production by splenic CD4+ cells and cell subsets from young and old mice. Cell Immunol. 1994 Apr 1;154(1):264–272. doi: 10.1006/cimm.1994.1076. [DOI] [PubMed] [Google Scholar]
  18. Kaplan D. R., Hambor J. E., Tykocinski M. L. An immunoregulatory function for the CD8 molecule. Proc Natl Acad Sci U S A. 1989 Nov;86(21):8512–8515. doi: 10.1073/pnas.86.21.8512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lombardi G., Sidhu S., Batchelor R., Lechler R. Anergic T cells as suppressor cells in vitro. Science. 1994 Jun 10;264(5165):1587–1589. doi: 10.1126/science.8202711. [DOI] [PubMed] [Google Scholar]
  20. Muraoka S., Miller R. G. Cells in bone marrow and in T cell colonies grown from bone marrow can suppress generation of cytotoxic T lymphocytes directed against their self antigens. J Exp Med. 1980 Jul 1;152(1):54–71. doi: 10.1084/jem.152.1.54. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Muraoka S., Miller R. G. Cells in murine fetal liver and in lymphoid colonies grown from fetal liver can suppress generation of cytotoxic T lymphocytes directed against their self antigens. J Immunol. 1983 Jul;131(1):45–49. [PubMed] [Google Scholar]
  22. Nishijima K., Hisatsune T., Minai Y., Kohyama M., Kaminogawa S. Anti-IL-10 antibody enhances the proliferation of CD8+ T cell clones: autoregulatory role of murine IL-10 in CD8+ T cells. Cell Immunol. 1994 Mar;154(1):193–201. doi: 10.1006/cimm.1994.1068. [DOI] [PubMed] [Google Scholar]
  23. O'Rourke A. M., Mescher M. F. The roles of CD8 in cytotoxic T lymphocyte function. Immunol Today. 1993 Apr;14(4):183–188. doi: 10.1016/0167-5699(93)90283-q. [DOI] [PubMed] [Google Scholar]
  24. Pearce E. J., Caspar P., Grzych J. M., Lewis F. A., Sher A. Downregulation of Th1 cytokine production accompanies induction of Th2 responses by a parasitic helminth, Schistosoma mansoni. J Exp Med. 1991 Jan 1;173(1):159–166. doi: 10.1084/jem.173.1.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rich R. F., Fujii T., Green W. R. CD4-CD8+ T lymphocytes mediate AKR/gross murine leukemia virus nonresponsiveness in moderately aged AKR.H-2b:Fv-1b mice. J Immunol. 1992 May 1;148(9):2961–2967. [PubMed] [Google Scholar]
  26. Salgame P., Abrams J. S., Clayberger C., Goldstein H., Convit J., Modlin R. L., Bloom B. R. Differing lymphokine profiles of functional subsets of human CD4 and CD8 T cell clones. Science. 1991 Oct 11;254(5029):279–282. doi: 10.1126/science.254.5029.279. [DOI] [PubMed] [Google Scholar]
  27. Sambhara S. R., Miller R. G. Programmed cell death of T cells signaled by the T cell receptor and the alpha 3 domain of class I MHC. Science. 1991 Jun 7;252(5011):1424–1427. doi: 10.1126/science.1828618. [DOI] [PubMed] [Google Scholar]
  28. Sambhara S. R., Miller R. G. Reduction of CTL antipeptide response mediated by CD8+ cells whose class I MHC can bind the peptide. J Immunol. 1994 Feb 1;152(3):1103–1109. [PubMed] [Google Scholar]
  29. Sijts A. J., Ossendorp F., Mengedé E. A., van den Elsen P. J., Melief C. J. Immunodominant mink cell focus-inducing murine leukemia virus (MuLV)-encoded CTL epitope, identified by its MHC class I-binding motif, explains MuLV-type specificity of MCF-directed cytotoxic T lymphocytes. J Immunol. 1994 Jan 1;152(1):106–116. [PubMed] [Google Scholar]
  30. Wegmann K. W., Blank K. J., Green W. R. Induction of anti-MuLV cytotoxic T lymphocytes in the AKR.H-2b and AKR.H-2b:Fv-1b mouse strains. Cell Immunol. 1988 May;113(2):308–319. doi: 10.1016/0008-8749(88)90029-9. [DOI] [PubMed] [Google Scholar]
  31. Wegmann K. W., Rich R. F., Green W. R. Generation of anti-AKR/gross murine leukemia virus cytotoxic T lymphocytes (CTL). An analysis of precursor CTL frequencies in the AKR.H-2b and C57BL/6 mouse strains. J Immunol. 1992 Sep 1;149(5):1593–1598. [PubMed] [Google Scholar]
  32. White H. D., Robbins M. D., Green W. R. Mechanism of escape of endogenous murine leukemia virus emv-14 from recognition by anti-AKR/Gross virus cytolytic T lymphocytes. J Virol. 1990 Jun;64(6):2608–2619. doi: 10.1128/jvi.64.6.2608-2619.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. White H. D., Roeder D. A., Green W. R. An immunodominant Kb-restricted peptide from the p15E transmembrane protein of endogenous ecotropic murine leukemia virus (MuLV) AKR623 that restores susceptibility of a tumor line to anti-AKR/Gross MuLV cytotoxic T lymphocytes. J Virol. 1994 Feb;68(2):897–904. doi: 10.1128/jvi.68.2.897-904.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Yamamura M., Uyemura K., Deans R. J., Weinberg K., Rea T. H., Bloom B. R., Modlin R. L. Defining protective responses to pathogens: cytokine profiles in leprosy lesions. Science. 1991 Oct 11;254(5029):277–279. doi: 10.1126/science.254.5029.277. [DOI] [PubMed] [Google Scholar]
  35. Zhang L., Shannon J., Sheldon J., Teh H. S., Mak T. W., Miller R. G. Role of infused CD8+ cells in the induction of peripheral tolerance. J Immunol. 1994 Mar 1;152(5):2222–2228. [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES