Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1996 Jan;70(1):478–486. doi: 10.1128/jvi.70.1.478-486.1996

In vivo restoration of biologically active 3' ends of virus-associated RNAs by nonhomologous RNA recombination and replacement of a terminal motif.

C D Carpenter 1, A E Simon 1
PMCID: PMC189836  PMID: 8523561

Abstract

Sequences at the 3' ends of plus-strand RNA viruses and their associated subviral RNAs are important cis elements for the synthesis of minus strands in vivo and in vitro. All RNAs associated with turnip crinkle virus (TCV), including the genomic RNA (4,054 bases) and satellite RNAs (sat-RNAs) such as sat-RNA D (194 bases), terminate with the motif CCUGCCC. While investigating the ability of in vivo-generated recombinants between sat-RNA D and TCV to be amplified in plants, we discovered that sat-RNA D, although truncated by as many as 15 bases in the chimeric molecules, was released from the chimeric transcripts and amplified to high levels. The "new" sat-RNA D molecules nearly all terminated with the motif (C1-2)UG(C1-3) (which may begin with 1 or 2 cytosines and end with 1, 2, or 3 cytosines), which was similar or identical to the natural sat-RNA D 3' end. The new sat-RNA D also contained between 1 and 22 bases of heterogeneous sequence upstream from the terminal motif, which, in some cases, was apparently derived from internal regions of either the plus or minus strand of the TCV genomic RNA. Since most of these internal genomic RNA sequences within TCV were not adjacent to (C1-2)UG(C1-3), at least two steps were required to produce new sat-RNA D 3' ends: nonhomologous recombination with the TCV genomic RNA followed by the addition or modification of the terminus to generate the (C1-2)UG(C1-3) motif.

Full Text

The Full Text of this article is available as a PDF (301.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ball L. A., Li Y. cis-acting requirements for the replication of flock house virus RNA 2. J Virol. 1993 Jun;67(6):3544–3551. doi: 10.1128/jvi.67.6.3544-3551.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boccard F., Baulcombe D. Mutational analysis of cis-acting sequences and gene function in RNA3 of cucumber mosaic virus. Virology. 1993 Apr;193(2):563–578. doi: 10.1006/viro.1993.1165. [DOI] [PubMed] [Google Scholar]
  3. Bujarski J. J., Ahlquist P., Hall T. C., Dreher T. W., Kaesberg P. Modulation of replication, aminoacylation and adenylation in vitro and infectivity in vivo of BMV RNAs containing deletions within the multifunctional 3' end. EMBO J. 1986 Aug;5(8):1769–1774. doi: 10.1002/j.1460-2075.1986.tb04425.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bujarski J. J., Kaesberg P. Genetic recombination between RNA components of a multipartite plant virus. 1986 May 29-Jun 4Nature. 321(6069):528–531. doi: 10.1038/321528a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carpenter C. D., Cascone P. J., Simon A. E. Formation of multimers of linear satellite RNAs. Virology. 1991 Aug;183(2):586–594. doi: 10.1016/0042-6822(91)90987-m. [DOI] [PubMed] [Google Scholar]
  6. Carpenter C. D., Oh J. W., Zhang C., Simon A. E. Involvement of a stem-loop structure in the location of junction sites in viral RNA recombination. J Mol Biol. 1995 Feb 3;245(5):608–622. doi: 10.1006/jmbi.1994.0050. [DOI] [PubMed] [Google Scholar]
  7. Carpenter C. D., Simon A. E. Recombination between plus and minus strands of turnip crinkle virus. Virology. 1994 Jun;201(2):419–423. doi: 10.1006/viro.1994.1312. [DOI] [PubMed] [Google Scholar]
  8. Cascone P. J., Carpenter C. D., Li X. H., Simon A. E. Recombination between satellite RNAs of turnip crinkle virus. EMBO J. 1990 Jun;9(6):1709–1715. doi: 10.1002/j.1460-2075.1990.tb08294.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cascone P. J., Haydar T. F., Simon A. E. Sequences and structures required for recombination between virus-associated RNAs. Science. 1993 May 7;260(5109):801–805. doi: 10.1126/science.8484119. [DOI] [PubMed] [Google Scholar]
  10. Dalmay T., Rubino L. Replication of cymbidium ringspot virus satellite RNA mutants. Virology. 1995 Feb 1;206(2):1092–1098. doi: 10.1006/viro.1995.1032. [DOI] [PubMed] [Google Scholar]
  11. Dalmay T., Russo M., Burgyán J. Repair in vivo of altered 3' terminus of cymbidium ringspot tombusvirus RNA. Virology. 1993 Feb;192(2):551–555. doi: 10.1006/viro.1993.1071. [DOI] [PubMed] [Google Scholar]
  12. Dreher T. W., Bujarski J. J., Hall T. C. Mutant viral RNAs synthesized in vitro show altered aminoacylation and replicase template activities. Nature. 1984 Sep 13;311(5982):171–175. doi: 10.1038/311171a0. [DOI] [PubMed] [Google Scholar]
  13. French R., Ahlquist P. Intercistronic as well as terminal sequences are required for efficient amplification of brome mosaic virus RNA3. J Virol. 1987 May;61(5):1457–1465. doi: 10.1128/jvi.61.5.1457-1465.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jacobson S. J., Konings D. A., Sarnow P. Biochemical and genetic evidence for a pseudoknot structure at the 3' terminus of the poliovirus RNA genome and its role in viral RNA amplification. J Virol. 1993 Jun;67(6):2961–2971. doi: 10.1128/jvi.67.6.2961-2971.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Joshi R. L., Joshi S., Chapeville F., Haenni A. L. tRNA-like structures of plant viral RNAs: conformational requirements for adenylation and aminoacylation. EMBO J. 1983;2(7):1123–1127. doi: 10.1002/j.1460-2075.1983.tb01556.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jupin I., Richards K., Jonard G., Guilley H., Pleij C. W. Mapping sequences required for productive replication of beet necrotic yellow vein virus RNA 3. Virology. 1990 Sep;178(1):273–280. doi: 10.1016/0042-6822(90)90403-e. [DOI] [PubMed] [Google Scholar]
  17. Kim Y. N., Jeong Y. S., Makino S. Analysis of cis-acting sequences essential for coronavirus defective interfering RNA replication. Virology. 1993 Nov;197(1):53–63. doi: 10.1006/viro.1993.1566. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lai M. M. RNA recombination in animal and plant viruses. Microbiol Rev. 1992 Mar;56(1):61–79. doi: 10.1128/mr.56.1.61-79.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Levis R., Weiss B. G., Tsiang M., Huang H., Schlesinger S. Deletion mapping of Sindbis virus DI RNAs derived from cDNAs defines the sequences essential for replication and packaging. Cell. 1986 Jan 17;44(1):137–145. doi: 10.1016/0092-8674(86)90492-7. [DOI] [PubMed] [Google Scholar]
  20. Li X. H., Heaton L. A., Morris T. J., Simon A. E. Turnip crinkle virus defective interfering RNAs intensify viral symptoms and are generated de novo. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9173–9177. doi: 10.1073/pnas.86.23.9173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Li X. H., Simon A. E. In vivo accumulation of a turnip crinkle virus defective interfering RNA is affected by alterations in size and sequence. J Virol. 1991 Sep;65(9):4582–4590. doi: 10.1128/jvi.65.9.4582-4590.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lin Y. J., Liao C. L., Lai M. M. Identification of the cis-acting signal for minus-strand RNA synthesis of a murine coronavirus: implications for the role of minus-strand RNA in RNA replication and transcription. J Virol. 1994 Dec;68(12):8131–8140. doi: 10.1128/jvi.68.12.8131-8140.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Neufeld K. L., Galarza J. M., Richards O. C., Summers D. F., Ehrenfeld E. Identification of terminal adenylyl transferase activity of the poliovirus polymerase 3Dpol. J Virol. 1994 Sep;68(9):5811–5818. doi: 10.1128/jvi.68.9.5811-5818.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Omata T., Kohara M., Sakai Y., Kameda A., Imura N., Nomoto A. Cloned infectious complementary DNA of the poliovirus Sabin 1 genome: biochemical and biological properties of the recovered virus. Gene. 1984 Dec;32(1-2):1–10. doi: 10.1016/0378-1119(84)90026-x. [DOI] [PubMed] [Google Scholar]
  25. Pacha R. F., Allison R. F., Ahlquist P. cis-acting sequences required for in vivo amplification of genomic RNA3 are organized differently in related bromoviruses. Virology. 1990 Feb;174(2):436–443. doi: 10.1016/0042-6822(90)90097-b. [DOI] [PubMed] [Google Scholar]
  26. Petty I. T. A plasmid vector for cloning directly at the transcription initiation site of a bacteriophage T7 promoter. Nucleic Acids Res. 1988 Sep 12;16(17):8738–8738. doi: 10.1093/nar/16.17.8738. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rao A. L., Dreher T. W., Marsh L. E., Hall T. C. Telomeric function of the tRNA-like structure of brome mosaic virus RNA. Proc Natl Acad Sci U S A. 1989 Jul;86(14):5335–5339. doi: 10.1073/pnas.86.14.5335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rao A. L., Grantham G. L. Amplification in vivo of brome mosaic virus RNAs bearing 3' noncoding region from cucumber mosaic virus. Virology. 1994 Oct;204(1):478–481. doi: 10.1006/viro.1994.1559. [DOI] [PubMed] [Google Scholar]
  29. Simon A. E., Howell S. H. Synthesis in vitro of infectious RNA copies of the virulent satellite of turnip crinkle virus. Virology. 1987 Jan;156(1):146–152. doi: 10.1016/0042-6822(87)90445-4. [DOI] [PubMed] [Google Scholar]
  30. Simon A. E., Howell S. H. The virulent satellite RNA of turnip crinkle virus has a major domain homologous to the 3' end of the helper virus genome. EMBO J. 1986 Dec 20;5(13):3423–3428. doi: 10.1002/j.1460-2075.1986.tb04664.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Song C., Simon A. E. RNA-dependent RNA polymerase from plants infected with turnip crinkle virus can transcribe (+)- and (-)-strands of virus-associated RNAs. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):8792–8796. doi: 10.1073/pnas.91.19.8792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Song C., Simon A. E. Requirement of a 3'-terminal stem-loop in in vitro transcription by an RNA-dependent RNA polymerase. J Mol Biol. 1995 Nov 17;254(1):6–14. doi: 10.1006/jmbi.1995.0594. [DOI] [PubMed] [Google Scholar]
  33. Song C., Simon A. E. Synthesis of novel products in vitro by an RNA-dependent RNA polymerase. J Virol. 1995 Jul;69(7):4020–4028. doi: 10.1128/jvi.69.7.4020-4028.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Takamatsu N., Watanabe Y., Meshi T., Okada Y. Mutational analysis of the pseudoknot region in the 3' noncoding region of tobacco mosaic virus RNA. J Virol. 1990 Aug;64(8):3686–3693. doi: 10.1128/jvi.64.8.3686-3693.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Tsai C. H., Dreher T. W. Second-site suppressor mutations assist in studying the function of the 3' noncoding region of turnip yellow mosaic virus RNA. J Virol. 1992 Sep;66(9):5190–5199. doi: 10.1128/jvi.66.9.5190-5199.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Zhang C. X., Cascone P. J., Simon A. E. Recombination between satellite and genomic RNAs of turnip crinkle virus. Virology. 1991 Oct;184(2):791–794. doi: 10.1016/0042-6822(91)90454-j. [DOI] [PubMed] [Google Scholar]
  37. Zhang C., Simon A. E. Effect of template size on accumulation of defective interfering RNAs in protoplasts. J Virol. 1994 Dec;68(12):8466–8469. doi: 10.1128/jvi.68.12.8466-8469.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Zhu L., Deutscher M. P. tRNA nucleotidyltransferase is not essential for Escherichia coli viability. EMBO J. 1987 Aug;6(8):2473–2477. doi: 10.1002/j.1460-2075.1987.tb02528.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES