Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1996 Jan;70(1):628–634. doi: 10.1128/jvi.70.1.628-634.1996

Kinetic analysis of intravirion reverse transcription in the blood plasma of human immunodeficiency virus type 1-infected individuals: direct assessment of resistance to reverse transcriptase inhibitors in vivo.

H Zhang 1, G Dornadula 1, Y Wu 1, D Havlir 1, D D Richman 1, R J Pomerantz 1
PMCID: PMC189857  PMID: 8523584

Abstract

Intravirion reverse transcripts have been identified in the blood plasma of human immunodeficiency virus type 1 (HIV-1)-infected individuals. In the present studies, the kinetic processes of intravirion HIV-1 reverse transcription, in the blood plasma of HIV-1-infected persons treated with nevirapine, were investigated. Nevirapine is a nonnucleoside inhibitor of reverse transcriptase (RT) which decreases the level of HIV-1 viral particles in the blood plasma of infected individuals. By analyzing HIV-1 virions at different time points prior to and after initiation of nevirapine therapy in vivo, the levels of intravirion reverse transcripts have been demonstrated to be dramatically susceptible to this anti-RT agent, out of proportion to effects on plasma virion load. The intravirion reverse transcripts were also documented to rebound to the pretreatment levels, concomitant with the development of resistant viral mutants. In addition, the infectivity of HIV-1 virions dramatically decreased after nevirapine treatment, further indicating that the effects of this anti-RT agent begin within the cell-free virions. Since the levels of intravirion reverse transcripts were altered according to the susceptibility or resistance of the HIV-1 RT enzyme to this inhibitor, these data demonstrate that the formation of intravirion reverse transcripts is a dynamic process in vivo. Moreover, because the alteration in ratios between intravirion HIV-1 reverse transcripts and viral genomic RNA directly reflects the efficiency of reverse transcription, we propose that the determination of these ratios in the blood plasma of HIV-1-positive patients may be a useful and, most importantly, a direct assay to monitor the efficacy of anti-RT agents in vivo.

Full Text

The Full Text of this article is available as a PDF (231.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnér E. S., Valentin A., Eriksson S. Thymidine and 3'-azido-3'-deoxythymidine metabolism in human peripheral blood lymphocytes and monocyte-derived macrophages. A study of both anabolic and catabolic pathways. J Biol Chem. 1992 Jun 5;267(16):10968–10975. [PubMed] [Google Scholar]
  2. Bagnarelli P., Menzo S., Valenza A., Manzin A., Giacca M., Ancarani F., Scalise G., Varaldo P. E., Clementi M. Molecular profile of human immunodeficiency virus type 1 infection in symptomless patients and in patients with AIDS. J Virol. 1992 Dec;66(12):7328–7335. doi: 10.1128/jvi.66.12.7328-7335.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cheeseman S. H., Havlir D., McLaughlin M. M., Greenough T. C., Sullivan J. L., Hall D., Hattox S. E., Spector S. A., Stein D. S., Myers M. Phase I/II evaluation of nevirapine alone and in combination with zidovudine for infection with human immunodeficiency virus. J Acquir Immune Defic Syndr Hum Retrovirol. 1995 Feb 1;8(2):141–151. [PubMed] [Google Scholar]
  4. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  5. Connor E. M., Sperling R. S., Gelber R., Kiselev P., Scott G., O'Sullivan M. J., VanDyke R., Bey M., Shearer W., Jacobson R. L. Reduction of maternal-infant transmission of human immunodeficiency virus type 1 with zidovudine treatment. Pediatric AIDS Clinical Trials Group Protocol 076 Study Group. N Engl J Med. 1994 Nov 3;331(18):1173–1180. doi: 10.1056/NEJM199411033311801. [DOI] [PubMed] [Google Scholar]
  6. Gao W. Y., Cara A., Gallo R. C., Lori F. Low levels of deoxynucleotides in peripheral blood lymphocytes: a strategy to inhibit human immunodeficiency virus type 1 replication. Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):8925–8928. doi: 10.1073/pnas.90.19.8925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Havlir D., Cheeseman S. H., McLaughlin M., Murphy R., Erice A., Spector S. A., Greenough T. C., Sullivan J. L., Hall D., Myers M. High-dose nevirapine: safety, pharmacokinetics, and antiviral effect in patients with human immunodeficiency virus infection. J Infect Dis. 1995 Mar;171(3):537–545. doi: 10.1093/infdis/171.3.537. [DOI] [PubMed] [Google Scholar]
  8. Henrard D. R., Mehaffey W. F., Allain J. P. A sensitive viral capture assay for detection of plasma viremia in HIV-infected individuals. AIDS Res Hum Retroviruses. 1992 Jan;8(1):47–52. doi: 10.1089/aid.1992.8.47. [DOI] [PubMed] [Google Scholar]
  9. Ho D. D., Neumann A. U., Perelson A. S., Chen W., Leonard J. M., Markowitz M. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature. 1995 Jan 12;373(6510):123–126. doi: 10.1038/373123a0. [DOI] [PubMed] [Google Scholar]
  10. Holodniy M., Katzenstein D. A., Israelski D. M., Merigan T. C. Reduction in plasma human immunodeficiency virus ribonucleic acid after dideoxynucleoside therapy as determined by the polymerase chain reaction. J Clin Invest. 1991 Nov;88(5):1755–1759. doi: 10.1172/JCI115494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kohlstaedt L. A., Wang J., Friedman J. M., Rice P. A., Steitz T. A. Crystal structure at 3.5 A resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science. 1992 Jun 26;256(5065):1783–1790. doi: 10.1126/science.1377403. [DOI] [PubMed] [Google Scholar]
  12. Lori F., di Marzo Veronese F., de Vico A. L., Lusso P., Reitz M. S., Jr, Gallo R. C. Viral DNA carried by human immunodeficiency virus type 1 virions. J Virol. 1992 Aug;66(8):5067–5074. doi: 10.1128/jvi.66.8.5067-5074.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Merluzzi V. J., Hargrave K. D., Labadia M., Grozinger K., Skoog M., Wu J. C., Shih C. K., Eckner K., Hattox S., Adams J. Inhibition of HIV-1 replication by a nonnucleoside reverse transcriptase inhibitor. Science. 1990 Dec 7;250(4986):1411–1413. doi: 10.1126/science.1701568. [DOI] [PubMed] [Google Scholar]
  14. Moses A. V., Bloom F. E., Pauza C. D., Nelson J. A. Human immunodeficiency virus infection of human brain capillary endothelial cells occurs via a CD4/galactosylceramide-independent mechanism. Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10474–10478. doi: 10.1073/pnas.90.22.10474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Qian M., Bui T., Ho R. J., Unadkat J. D. Metabolism of 3'-azido-3'-deoxythymidine (AZT) in human placental trophoblasts and Hofbauer cells. Biochem Pharmacol. 1994 Jul 19;48(2):383–389. doi: 10.1016/0006-2952(94)90111-2. [DOI] [PubMed] [Google Scholar]
  16. Richman D. D., Havlir D., Corbeil J., Looney D., Ignacio C., Spector S. A., Sullivan J., Cheeseman S., Barringer K., Pauletti D. Nevirapine resistance mutations of human immunodeficiency virus type 1 selected during therapy. J Virol. 1994 Mar;68(3):1660–1666. doi: 10.1128/jvi.68.3.1660-1666.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Richman D., Shih C. K., Lowy I., Rose J., Prodanovich P., Goff S., Griffin J. Human immunodeficiency virus type 1 mutants resistant to nonnucleoside inhibitors of reverse transcriptase arise in tissue culture. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11241–11245. doi: 10.1073/pnas.88.24.11241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Spence R. A., Kati W. M., Anderson K. S., Johnson K. A. Mechanism of inhibition of HIV-1 reverse transcriptase by nonnucleoside inhibitors. Science. 1995 Feb 17;267(5200):988–993. doi: 10.1126/science.7532321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Trono D. Partial reverse transcripts in virions from human immunodeficiency and murine leukemia viruses. J Virol. 1992 Aug;66(8):4893–4900. doi: 10.1128/jvi.66.8.4893-4900.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Törnevik Y., Jacobsson B., Britton S., Eriksson S. Intracellular metabolism of 3'-azidothymidine in isolated human peripheral blood mononuclear cells. AIDS Res Hum Retroviruses. 1991 Sep;7(9):751–759. doi: 10.1089/aid.1991.7.751. [DOI] [PubMed] [Google Scholar]
  21. Wei X., Ghosh S. K., Taylor M. E., Johnson V. A., Emini E. A., Deutsch P., Lifson J. D., Bonhoeffer S., Nowak M. A., Hahn B. H. Viral dynamics in human immunodeficiency virus type 1 infection. Nature. 1995 Jan 12;373(6510):117–122. doi: 10.1038/373117a0. [DOI] [PubMed] [Google Scholar]
  22. Winters M. A., Tan L. B., Katzenstein D. A., Merigan T. C. Biological variation and quality control of plasma human immunodeficiency virus type 1 RNA quantitation by reverse transcriptase polymerase chain reaction. J Clin Microbiol. 1993 Nov;31(11):2960–2966. doi: 10.1128/jcm.31.11.2960-2966.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Zhang H., Bagasra O., Niikura M., Poiesz B. J., Pomerantz R. J. Intravirion reverse transcripts in the peripheral blood plasma on human immunodeficiency virus type 1-infected individuals. J Virol. 1994 Nov;68(11):7591–7597. doi: 10.1128/jvi.68.11.7591-7597.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Zhang H., Duan L. X., Dornadula G., Pomerantz R. J. Increasing transduction efficiency of recombinant murine retrovirus vectors by initiation of endogenous reverse transcription: potential utility for genetic therapies. J Virol. 1995 Jun;69(6):3929–3932. doi: 10.1128/jvi.69.6.3929-3932.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Zhang H., Zhang Y., Spicer T. P., Abbott L. Z., Abbott M., Poiesz B. J. Reverse transcription takes place within extracellular HIV-1 virions: potential biological significance. AIDS Res Hum Retroviruses. 1993 Dec;9(12):1287–1296. doi: 10.1089/aid.1993.9.1287. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES