Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1996 Feb;70(2):689–696. doi: 10.1128/jvi.70.2.689-696.1996

The molecular target of bicyclams, potent inhibitors of human immunodeficiency virus replication.

K de Vreese 1, V Kofler-Mongold 1, C Leutgeb 1, V Weber 1, K Vermeire 1, S Schacht 1, J Anné 1, E de Clercq 1, R Datema 1, G Werner 1
PMCID: PMC189868  PMID: 8551604

Abstract

Bicyclams are a novel class of antiviral compounds which act as potent and selective inhibitors of the replication of human immunodeficiency virus type 1 (HIV-1) and HIV-2. They block an early step in the viral life cycle following adsorption to the CD4 receptor and preceding reverse transcription. To identify the molecular target of these compounds, we genetically analyzed variants of the HIV-1 molecular clone NL4-3, which developed resistance against two structurally related bicyclams, JM2763 and the more potent SID791. The resistant strains were obtained after long-term passaging in MT-4 cells in the presence of progressively increasing compound concentrations. Recombinants between selected genes of the resistant strains and the parental NL4-3 provirus were generated by adapting the marker rescue technique to MT-4 cells. The bicyclam-resistant phenotype was rescued by transferring the envelope gp120 gene of bicyclam-resistant virus into the NL4-3 parental genetic background. In the gp120 genes of the resistant strains, we identified several mutations leading to amino acid substitutions in the V3 loop. Furthermore, two substitutions of highly conserved amino acids in close proximity to the disulfide bridges of the V3 and V4 loops were found in both SID791- and JM2763-resistant strains. Additional mutations in regions encoding V3, C4, V5, and C5 were present in SID791-resistant viruses. Recombination experiments with overlapping parts of the envelope gene indicated that most, if not all, of the mutations were necessary to develop the fully SID791 resistant phenotype. The mutations in the C-terminal part of gp120 downstream of the V3 loop sequence conferred partial resistance to JM2763 but did not significantly decrease susceptibility to SID791. The genetic data and the biological properties of the resistant viruses point to inhibition of entry and fusion as the mode of action of the HIV-inhibitory bicyclams. A possible mechanism of binding of bicyclams to gp120 leading to inhibition of unfolding of gp120 and its shedding from the gp41 fusion domain is discussed.

Full Text

The Full Text of this article is available as a PDF (249.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adachi A., Gendelman H. E., Koenig S., Folks T., Willey R., Rabson A., Martin M. A. Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. J Virol. 1986 Aug;59(2):284–291. doi: 10.1128/jvi.59.2.284-291.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baba M., Pauwels R., Balzarini J., Arnout J., Desmyter J., De Clercq E. Mechanism of inhibitory effect of dextran sulfate and heparin on replication of human immunodeficiency virus in vitro. Proc Natl Acad Sci U S A. 1988 Aug;85(16):6132–6136. doi: 10.1073/pnas.85.16.6132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Balzarini J., Karlsson A., Pérez-Pérez M. J., Vrang L., Walbers J., Zhang H., Oberg B., Vandamme A. M., Camarasa M. J., De Clercq E. HIV-1-specific reverse transcriptase inhibitors show differential activity against HIV-1 mutant strains containing different amino acid substitutions in the reverse transcriptase. Virology. 1993 Jan;192(1):246–253. doi: 10.1006/viro.1993.1027. [DOI] [PubMed] [Google Scholar]
  4. Batinić D., Robey F. A. The V3 region of the envelope glycoprotein of human immunodeficiency virus type 1 binds sulfated polysaccharides and CD4-derived synthetic peptides. J Biol Chem. 1992 Apr 5;267(10):6664–6671. [PubMed] [Google Scholar]
  5. Bloom D. C., Stevens J. G. Neuron-specific restriction of a herpes simplex virus recombinant maps to the UL5 gene. J Virol. 1994 Jun;68(6):3761–3772. doi: 10.1128/jvi.68.6.3761-3772.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bridger G. J., Skerlj R. T., Thornton D., Padmanabhan S., Martellucci S. A., Henson G. W., Abrams M. J., Yamamoto N., De Vreese K., Pauwels R. Synthesis and structure-activity relationships of phenylenebis(methylene)-linked bis-tetraazamacrocycles that inhibit HIV replication. Effects of macrocyclic ring size and substituents on the aromatic linker. J Med Chem. 1995 Jan 20;38(2):366–378. doi: 10.1021/jm00002a019. [DOI] [PubMed] [Google Scholar]
  7. Callahan L. N., Phelan M., Mallinson M., Norcross M. A. Dextran sulfate blocks antibody binding to the principal neutralizing domain of human immunodeficiency virus type 1 without interfering with gp120-CD4 interactions. J Virol. 1991 Mar;65(3):1543–1550. doi: 10.1128/jvi.65.3.1543-1550.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Callebaut C., Krust B., Jacotot E., Hovanessian A. G. T cell activation antigen, CD26, as a cofactor for entry of HIV in CD4+ cells. Science. 1993 Dec 24;262(5142):2045–2050. doi: 10.1126/science.7903479. [DOI] [PubMed] [Google Scholar]
  9. Capon D. J., Ward R. H. The CD4-gp120 interaction and AIDS pathogenesis. Annu Rev Immunol. 1991;9:649–678. doi: 10.1146/annurev.iy.09.040191.003245. [DOI] [PubMed] [Google Scholar]
  10. Catasti P., Fontenot J. D., Bradbury E. M., Gupta G. Local and global structural properties of the HIV-MN V3 loop. J Biol Chem. 1995 Feb 3;270(5):2224–2232. doi: 10.1074/jbc.270.5.2224. [DOI] [PubMed] [Google Scholar]
  11. Chiou S. H., Freed E. O., Panganiban A. T., Kenealy W. R. Studies on the role of the V3 loop in human immunodeficiency virus type 1 envelope glycoprotein function. AIDS Res Hum Retroviruses. 1992 Sep;8(9):1611–1618. doi: 10.1089/aid.1992.8.1611. [DOI] [PubMed] [Google Scholar]
  12. Clements G. J., Price-Jones M. J., Stephens P. E., Sutton C., Schulz T. F., Clapham P. R., McKeating J. A., McClure M. O., Thomson S., Marsh M. The V3 loops of the HIV-1 and HIV-2 surface glycoproteins contain proteolytic cleavage sites: a possible function in viral fusion? AIDS Res Hum Retroviruses. 1991 Jan;7(1):3–16. doi: 10.1089/aid.1991.7.3. [DOI] [PubMed] [Google Scholar]
  13. Coffin J. M. HIV population dynamics in vivo: implications for genetic variation, pathogenesis, and therapy. Science. 1995 Jan 27;267(5197):483–489. doi: 10.1126/science.7824947. [DOI] [PubMed] [Google Scholar]
  14. De Clercq E., Yamamoto N., Pauwels R., Baba M., Schols D., Nakashima H., Balzarini J., Debyser Z., Murrer B. A., Schwartz D. Potent and selective inhibition of human immunodeficiency virus (HIV)-1 and HIV-2 replication by a class of bicyclams interacting with a viral uncoating event. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5286–5290. doi: 10.1073/pnas.89.12.5286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. De Clercq E., Yamamoto N., Pauwels R., Balzarini J., Witvrouw M., De Vreese K., Debyser Z., Rosenwirth B., Peichl P., Datema R. Highly potent and selective inhibition of human immunodeficiency virus by the bicyclam derivative JM3100. Antimicrob Agents Chemother. 1994 Apr;38(4):668–674. doi: 10.1128/aac.38.4.668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gorelick R. J., Chabot D. J., Rein A., Henderson L. E., Arthur L. O. The two zinc fingers in the human immunodeficiency virus type 1 nucleocapsid protein are not functionally equivalent. J Virol. 1993 Jul;67(7):4027–4036. doi: 10.1128/jvi.67.7.4027-4036.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gu R., Westervelt P., Ratner L. Role of HIV-1 envelope V3 loop cleavage in cell tropism. AIDS Res Hum Retroviruses. 1993 Oct;9(10):1007–1015. doi: 10.1089/aid.1993.9.1007. [DOI] [PubMed] [Google Scholar]
  18. Hammer S. M., Kessler H. A., Saag M. S. Issues in combination antiretroviral therapy: a review. J Acquir Immune Defic Syndr. 1994;7 (Suppl 2):S24–S37. [PubMed] [Google Scholar]
  19. Ho D. D., Neumann A. U., Perelson A. S., Chen W., Leonard J. M., Markowitz M. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature. 1995 Jan 12;373(6510):123–126. doi: 10.1038/373123a0. [DOI] [PubMed] [Google Scholar]
  20. Ho D. D., Toyoshima T., Mo H., Kempf D. J., Norbeck D., Chen C. M., Wideburg N. E., Burt S. K., Erickson J. W., Singh M. K. Characterization of human immunodeficiency virus type 1 variants with increased resistance to a C2-symmetric protease inhibitor. J Virol. 1994 Mar;68(3):2016–2020. doi: 10.1128/jvi.68.3.2016-2020.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Jacobsen H., Yasargil K., Winslow D. L., Craig J. C., Kröhn A., Duncan I. B., Mous J. Characterization of human immunodeficiency virus type 1 mutants with decreased sensitivity to proteinase inhibitor Ro 31-8959. Virology. 1995 Jan 10;206(1):527–534. doi: 10.1016/s0042-6822(95)80069-7. [DOI] [PubMed] [Google Scholar]
  22. Korber B. T., MacInnes K., Smith R. F., Myers G. Mutational trends in V3 loop protein sequences observed in different genetic lineages of human immunodeficiency virus type 1. J Virol. 1994 Oct;68(10):6730–6744. doi: 10.1128/jvi.68.10.6730-6744.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Larder B. A. 3'-Azido-3'-deoxythymidine resistance suppressed by a mutation conferring human immunodeficiency virus type 1 resistance to nonnucleoside reverse transcriptase inhibitors. Antimicrob Agents Chemother. 1992 Dec;36(12):2664–2669. doi: 10.1128/aac.36.12.2664. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Matthews T. J., Wild C., Chen C. H., Bolognesi D. P., Greenberg M. L. Structural rearrangements in the transmembrane glycoprotein after receptor binding. Immunol Rev. 1994 Aug;140:93–104. doi: 10.1111/j.1600-065x.1994.tb00866.x. [DOI] [PubMed] [Google Scholar]
  25. McClure M. O., Moore J. P., Blanc D. F., Scotting P., Cook G. M., Keynes R. J., Weber J. N., Davies D., Weiss R. A. Investigations into the mechanism by which sulfated polysaccharides inhibit HIV infection in vitro. AIDS Res Hum Retroviruses. 1992 Jan;8(1):19–26. doi: 10.1089/aid.1992.8.19. [DOI] [PubMed] [Google Scholar]
  26. McLachlin J. R., Miller L. K. Identification and characterization of vlf-1, a baculovirus gene involved in very late gene expression. J Virol. 1994 Dec;68(12):7746–7756. doi: 10.1128/jvi.68.12.7746-7756.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Mellors J. W., Dutschman G. E., Im G. J., Tramontano E., Winkler S. R., Cheng Y. C. In vitro selection and molecular characterization of human immunodeficiency virus-1 resistant to non-nucleoside inhibitors of reverse transcriptase. Mol Pharmacol. 1992 Mar;41(3):446–451. [PubMed] [Google Scholar]
  28. Meshcheryakova D., Andreev S., Tarasova S., Sidorova M., Vafina M., Kornilaeva G., Karamov E., Khaitov R. CD4-derived peptide and sulfated polysaccharides have similar mechanisms of anti-HIV activity based on electrostatic interactions with positively charged gp120 fragments. Mol Immunol. 1993 Aug;30(11):993–1001. doi: 10.1016/0161-5890(93)90124-t. [DOI] [PubMed] [Google Scholar]
  29. Pauwels R., Balzarini J., Baba M., Snoeck R., Schols D., Herdewijn P., Desmyter J., De Clercq E. Rapid and automated tetrazolium-based colorimetric assay for the detection of anti-HIV compounds. J Virol Methods. 1988 Aug;20(4):309–321. doi: 10.1016/0166-0934(88)90134-6. [DOI] [PubMed] [Google Scholar]
  30. Rice W. G., Schaeffer C. A., Harten B., Villinger F., South T. L., Summers M. F., Henderson L. E., Bess J. W., Jr, Arthur L. O., McDougal J. S. Inhibition of HIV-1 infectivity by zinc-ejecting aromatic C-nitroso compounds. Nature. 1993 Feb 4;361(6411):473–475. doi: 10.1038/361473a0. [DOI] [PubMed] [Google Scholar]
  31. Ryser H. J., Levy E. M., Mandel R., DiSciullo G. J. Inhibition of human immunodeficiency virus infection by agents that interfere with thiol-disulfide interchange upon virus-receptor interaction. Proc Natl Acad Sci U S A. 1994 May 10;91(10):4559–4563. doi: 10.1073/pnas.91.10.4559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sattentau Q. J. CD4 activation of HIV fusion. Int J Cell Cloning. 1992 Nov;10(6):323–332. doi: 10.1002/stem.5530100603. [DOI] [PubMed] [Google Scholar]
  33. South T. L., Summers M. F. Zinc- and sequence-dependent binding to nucleic acids by the N-terminal zinc finger of the HIV-1 nucleocapsid protein: NMR structure of the complex with the Psi-site analog, dACGCC. Protein Sci. 1993 Jan;2(1):3–19. doi: 10.1002/pro.5560020102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Stein B. S., Engleman E. G. Mechanism of HIV-1 entry into CD4+ T cells. Adv Exp Med Biol. 1991;300:71–96. doi: 10.1007/978-1-4684-5976-0_6. [DOI] [PubMed] [Google Scholar]
  35. Tang Q., Ginsberg H. S. trans-dominant interference of type 5 adenovirus E1a mutants in cell transformation. J Virol. 1994 Apr;68(4):2127–2134. doi: 10.1128/jvi.68.4.2127-2134.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Wei X., Ghosh S. K., Taylor M. E., Johnson V. A., Emini E. A., Deutsch P., Lifson J. D., Bonhoeffer S., Nowak M. A., Hahn B. H. Viral dynamics in human immunodeficiency virus type 1 infection. Nature. 1995 Jan 12;373(6510):117–122. doi: 10.1038/373117a0. [DOI] [PubMed] [Google Scholar]
  37. Werner A., Levy J. A. Human immunodeficiency virus type 1 envelope gp120 is cleaved after incubation with recombinant soluble CD4. J Virol. 1993 May;67(5):2566–2574. doi: 10.1128/jvi.67.5.2566-2574.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Wu X., Xiao W., Brandsma J. L. Papilloma formation by cottontail rabbit papillomavirus requires E1 and E2 regulatory genes in addition to E6 and E7 transforming genes. J Virol. 1994 Sep;68(9):6097–6102. doi: 10.1128/jvi.68.9.6097-6102.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES