Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1996 Feb;70(2):729–736. doi: 10.1128/jvi.70.2.729-736.1996

Random removal of inserts from an RNA genome: selection against single-stranded RNA.

R C Olsthoorn 1, J van Duin 1
PMCID: PMC189873  PMID: 8551609

Abstract

We have monitored the evolution of insertions in two MS2 RNA regions of known secondary structure where coding pressure is negligible or absent. Base changes and shortening of the inserts proceed until the excessive nucleotides can be accommodated in the original structure. The stems of hairpins can be dramatically extended but the loops cannot, revealing natural selection against single-stranded RNA. The 3' end of the MS2 A-protein gene forms a small hairpin with an XbaI sequence in the loop. This site was used to insert XbaI fragments of various sizes. Phages produced by these MS2 cDNA clones were not wild type, nor had they retained the full insert. Instead, every revertant phage had trimmed the insert in a different way to leave a four- to seven-membered loop to the now extended stem. Similar results were obtained with inserts in the 5' untranslated region. The great number of different revertants obtained from a single starting mutant as well as sequence inspection of the crossover points suggest that the removal of redundant RNA occurs randomly. The only common feature among all revertants appears the potential to form a hairpin with a short loop, suggesting that single-stranded RNA negatively affects the viability of the phage. To test this hypothesis, we introduced XbaI fragments of 34 nucleotides that could form either a long stem with a small loop or a short stem with a large loop (26 nucleotides). The base-paired inserts were perfectly maintained for many generations, whereas the unpaired versions were quickly trimmed back to reduce the size of the loop. These data confirm that single-stranded RNA adversely affects phage fitness and is strongly selected against. The repair of the RNA genome that we describe here appears as the result of random recombination. Of the plethora of recombinants, only those able to adopt a base-paired structure survive. The frequency with which our inserts are removed seems higher than measured by others for small inserts in a reading frame in Q beta RNA. To account for this higher frequency, we suggest models in which the single-stranded nature of our inserts induces random recombination at the site of the insertion.

Full Text

The Full Text of this article is available as a PDF (278.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Axelrod V. D., Brown E., Priano C., Mills D. R. Coliphage Q beta RNA replication: RNA catalytic for single-strand release. Virology. 1991 Oct;184(2):595–608. doi: 10.1016/0042-6822(91)90430-j. [DOI] [PubMed] [Google Scholar]
  2. Beekwilder M. J., Nieuwenhuizen R., van Duin J. Secondary structure model for the last two domains of single-stranded RNA phage Q beta. J Mol Biol. 1995 Apr 14;247(5):903–917. doi: 10.1006/jmbi.1995.0189. [DOI] [PubMed] [Google Scholar]
  3. Biebricher C. K., Luce R. In vitro recombination and terminal elongation of RNA by Q beta replicase. EMBO J. 1992 Dec;11(13):5129–5135. doi: 10.1002/j.1460-2075.1992.tb05620.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chelladurai B., Li H., Zhang K., Nicholson A. W. Mutational analysis of a ribonuclease III processing signal. Biochemistry. 1993 Jul 27;32(29):7549–7558. doi: 10.1021/bi00080a029. [DOI] [PubMed] [Google Scholar]
  5. Clarke D. K., Duarte E. A., Elena S. F., Moya A., Domingo E., Holland J. The red queen reigns in the kingdom of RNA viruses. Proc Natl Acad Sci U S A. 1994 May 24;91(11):4821–4824. doi: 10.1073/pnas.91.11.4821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Domingo E., Martínez-Salas E., Sobrino F., de la Torre J. C., Portela A., Ortín J., López-Galindez C., Pérez-Breña P., Villanueva N., Nájera R. The quasispecies (extremely heterogeneous) nature of viral RNA genome populations: biological relevance--a review. Gene. 1985;40(1):1–8. doi: 10.1016/0378-1119(85)90017-4. [DOI] [PubMed] [Google Scholar]
  7. Groeneveld H., Thimon K., van Duin J. Translational control of maturation-protein synthesis in phage MS2: a role for the kinetics of RNA folding? RNA. 1995 Mar;1(1):79–88. [PMC free article] [PubMed] [Google Scholar]
  8. Hjalt T. A., Wagner E. G. Bulged-out nucleotides protect an antisense RNA from RNase III cleavage. Nucleic Acids Res. 1995 Feb 25;23(4):571–579. doi: 10.1093/nar/23.4.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jacobson A. B., Zuker M. Structural analysis by energy dot plot of a large mRNA. J Mol Biol. 1993 Sep 20;233(2):261–269. doi: 10.1006/jmbi.1993.1504. [DOI] [PubMed] [Google Scholar]
  10. Kozlovska T. M., Cielens I., Dreilinņa D., Dislers A., Baumanis V., Ose V., Pumpens P. Recombinant RNA phage Q beta capsid particles synthesized and self-assembled in Escherichia coli. Gene. 1993 Dec 27;137(1):133–137. doi: 10.1016/0378-1119(93)90261-z. [DOI] [PubMed] [Google Scholar]
  11. Lai M. M. RNA recombination in animal and plant viruses. Microbiol Rev. 1992 Mar;56(1):61–79. doi: 10.1128/mr.56.1.61-79.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Miller J. H., Ganem D., Lu P., Schmitz A. Genetic studies of the lac repressor. I. Correlation of mutational sites with specific amino acid residues: construction of a colinear gene-protein map. J Mol Biol. 1977 Jan 15;109(2):275–298. doi: 10.1016/s0022-2836(77)80034-x. [DOI] [PubMed] [Google Scholar]
  13. Mills D. R., Dobkin C., Kramer F. R. Template-determined, variable rate of RNA chain elongation. Cell. 1978 Oct;15(2):541–550. doi: 10.1016/0092-8674(78)90022-3. [DOI] [PubMed] [Google Scholar]
  14. Moody M. D., Burg J. L., DiFrancesco R., Lovern D., Stanick W., Lin-Goerke J., Mahdavi K., Wu Y., Farrell M. P. Evolution of host cell RNA into efficient template RNA by Q beta replicase: the origin of RNA in untemplated reactions. Biochemistry. 1994 Nov 22;33(46):13836–13847. doi: 10.1021/bi00250a038. [DOI] [PubMed] [Google Scholar]
  15. Munishkin A. V., Voronin L. A., Chetverin A. B. An in vivo recombinant RNA capable of autocatalytic synthesis by Q beta replicase. Nature. 1988 Jun 2;333(6172):473–475. doi: 10.1038/333473a0. [DOI] [PubMed] [Google Scholar]
  16. Munishkin A. V., Voronin L. A., Ugarov V. I., Bondareva L. A., Chetverina H. V., Chetverin A. B. Efficient templates for Q beta replicase are formed by recombination from heterologous sequences. J Mol Biol. 1991 Sep 20;221(2):463–472. doi: 10.1016/0022-2836(91)80067-5. [DOI] [PubMed] [Google Scholar]
  17. Nagy P. D., Bujarski J. J. Efficient system of homologous RNA recombination in brome mosaic virus: sequence and structure requirements and accuracy of crossovers. J Virol. 1995 Jan;69(1):131–140. doi: 10.1128/jvi.69.1.131-140.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nagy P. D., Bujarski J. J. Targeting the site of RNA-RNA recombination in brome mosaic virus with antisense sequences. Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6390–6394. doi: 10.1073/pnas.90.14.6390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Olsthoorn R. C., Garde G., Dayhuff T., Atkins J. F., Van Duin J. Nucleotide sequence of a single-stranded RNA phage from Pseudomonas aeruginosa: kinship to coliphages and conservation of regulatory RNA structures. Virology. 1995 Jan 10;206(1):611–625. doi: 10.1016/s0042-6822(95)80078-6. [DOI] [PubMed] [Google Scholar]
  20. Olsthoorn R. C., Licis N., van Duin J. Leeway and constraints in the forced evolution of a regulatory RNA helix. EMBO J. 1994 Jun 1;13(11):2660–2668. doi: 10.1002/j.1460-2075.1994.tb06556.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Olsthoorn R. C., Zoog S., van Duin J. Coevolution of RNA helix stability and Shine-Dalgarno complementarity in a translational start region. Mol Microbiol. 1995 Jan;15(2):333–339. doi: 10.1111/j.1365-2958.1995.tb02247.x. [DOI] [PubMed] [Google Scholar]
  22. Palasingam K., Shaklee P. N. Reversion of Q beta RNA phage mutants by homologous RNA recombination. J Virol. 1992 Apr;66(4):2435–2442. doi: 10.1128/jvi.66.4.2435-2442.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Priano C., Kramer F. R., Mills D. R. Evolution of the RNA coliphages: the role of secondary structures during RNA replication. Cold Spring Harb Symp Quant Biol. 1987;52:321–330. doi: 10.1101/sqb.1987.052.01.037. [DOI] [PubMed] [Google Scholar]
  24. Remaut E., Stanssens P., Fiers W. Plasmid vectors for high-efficiency expression controlled by the PL promoter of coliphage lambda. Gene. 1981 Oct;15(1):81–93. doi: 10.1016/0378-1119(81)90106-2. [DOI] [PubMed] [Google Scholar]
  25. Skripkin E. A., Adhin M. R., de Smit M. H., van Duin J. Secondary structure of the central region of bacteriophage MS2 RNA. Conservation and biological significance. J Mol Biol. 1990 Jan 20;211(2):447–463. doi: 10.1016/0022-2836(90)90364-R. [DOI] [PubMed] [Google Scholar]
  26. Skripkin E. A., Jacobson A. B. A two-dimensional model at the nucleotide level for the central hairpin of coliphage Q beta RNA. J Mol Biol. 1993 Sep 20;233(2):245–260. doi: 10.1006/jmbi.1993.1503. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES