Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1996 Feb;70(2):801–808. doi: 10.1128/jvi.70.2.801-808.1996

Identification of protein regions involved in the interaction of human respiratory syncytial virus phosphoprotein and nucleoprotein: significance for nucleocapsid assembly and formation of cytoplasmic inclusions.

B García-Barreno 1, T Delgado 1, J A Melero 1
PMCID: PMC189882  PMID: 8551618

Abstract

We have reported previously that the nucleoprotein (N), the phosphoprotein (P), and the 22-kDa protein of human respiratory syncytial virus (HRSV) are components of the cytoplasmic inclusion bodies observed in HEp-2-infected cells. In addition, coexpression of N and P was sufficient to induce the formation of N-P complexes detectable by either coimmunoprecipitation with anti-P antibodies or generation of cytoplasmic inclusions. We now report the identification of protein regions required for these interactions. Deletion mutant analysis of the P protein gene indicated that its C-terminal end was essential for interacting with N. This conclusion was strengthened by the finding that an anti-P monoclonal antibody (021/12P), reacting with a 21-residue P protein C-terminal peptide, apparently displaced N from N-P complexes. The same effect was observed with high concentrations of the C-terminal peptide. However, sequence requirements for the P protein C-terminal end were not absolute, and mutants with the substitution Ser-237-->Ala or Ser-237-->Thr were as efficient as the wild type in interacting with N. In addition, P and N proteins from strains of different HRSV antigenic groups, with sequence differences in the P protein C-terminal end, were able to coimmunoprecipitate and formed cytoplasmic inclusions. Deletion mutant analysis of the N gene indicated that large segments of this polypeptide were required for interacting with P. The relevance of these interactions for HRSV is discussed in comparison with those of analogous proteins from related viruses.

Full Text

The Full Text of this article is available as a PDF (638.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akerlind B., Norrby E., Orvell C., Mufson M. A. Respiratory syncytial virus: heterogeneity of subgroup B strains. J Gen Virol. 1988 Sep;69(Pt 9):2145–2154. doi: 10.1099/0022-1317-69-9-2145. [DOI] [PubMed] [Google Scholar]
  2. Arbiza J., Taylor G., López J. A., Furze J., Wyld S., Whyte P., Stott E. J., Wertz G., Sullender W., Trudel M. Characterization of two antigenic sites recognized by neutralizing monoclonal antibodies directed against the fusion glycoprotein of human respiratory syncytial virus. J Gen Virol. 1992 Sep;73(Pt 9):2225–2234. doi: 10.1099/0022-1317-73-9-2225. [DOI] [PubMed] [Google Scholar]
  3. Buchholz C. J., Spehner D., Drillien R., Neubert W. J., Homann H. E. The conserved N-terminal region of Sendai virus nucleocapsid protein NP is required for nucleocapsid assembly. J Virol. 1993 Oct;67(10):5803–5812. doi: 10.1128/jvi.67.10.5803-5812.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chenik M., Chebli K., Gaudin Y., Blondel D. In vivo interaction of rabies virus phosphoprotein (P) and nucleoprotein (N): existence of two N-binding sites on P protein. J Gen Virol. 1994 Nov;75(Pt 11):2889–2896. doi: 10.1099/0022-1317-75-11-2889. [DOI] [PubMed] [Google Scholar]
  5. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  6. Collins P. L., Mink M. A., Hill M. G., 3rd, Camargo E., Grosfeld H., Stec D. S. Rescue of a 7502-nucleotide (49.3% of full-length) synthetic analog of respiratory syncytial virus genomic RNA. Virology. 1993 Jul;195(1):252–256. doi: 10.1006/viro.1993.1368. [DOI] [PubMed] [Google Scholar]
  7. Curran J., Marq J. B., Kolakofsky D. An N-terminal domain of the Sendai paramyxovirus P protein acts as a chaperone for the NP protein during the nascent chain assembly step of genome replication. J Virol. 1995 Feb;69(2):849–855. doi: 10.1128/jvi.69.2.849-855.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Davis N. L., Arnheiter H., Wertz G. W. Vesicular stomatitis virus N and NS proteins form multiple complexes. J Virol. 1986 Sep;59(3):751–754. doi: 10.1128/jvi.59.3.751-754.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Emerson S. U., Schubert M. Location of the binding domains for the RNA polymerase L and the ribonucleocapsid template within different halves of the NS phosphoprotein of vesicular stomatitis virus. Proc Natl Acad Sci U S A. 1987 Aug;84(16):5655–5659. doi: 10.1073/pnas.84.16.5655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fu Z. F., Zheng Y., Wunner W. H., Koprowski H., Dietzschold B. Both the N- and the C-terminal domains of the nominal phosphoprotein of rabies virus are involved in binding to the nucleoprotein. Virology. 1994 May 1;200(2):590–597. doi: 10.1006/viro.1994.1222. [DOI] [PubMed] [Google Scholar]
  11. Fuerst T. R., Niles E. G., Studier F. W., Moss B. Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8122–8126. doi: 10.1073/pnas.83.21.8122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Garcia-Barreno B., Jorcano J. L., Aukenbauer T., López-Galíndez C., Melero J. A. Participation of cytoskeletal intermediate filaments in the infectious cycle of human respiratory syncytial virus (RSV). Virus Res. 1988 Mar;9(4):307–321. doi: 10.1016/0168-1702(88)90090-1. [DOI] [PubMed] [Google Scholar]
  13. García-Barreno B., Palomo C., Peñas C., Delgado T., Perez-Breña P., Melero J. A. Marked differences in the antigenic structure of human respiratory syncytial virus F and G glycoproteins. J Virol. 1989 Feb;63(2):925–932. doi: 10.1128/jvi.63.2.925-932.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. García J., García-Barreno B., Martinez I., Melero J. A. Mapping of monoclonal antibody epitopes of the human respiratory syncytial virus p protein. Virology. 1993 Jul;195(1):239–242. doi: 10.1006/viro.1993.1365. [DOI] [PubMed] [Google Scholar]
  15. García J., García-Barreno B., Vivo A., Melero J. A. Cytoplasmic inclusions of respiratory syncytial virus-infected cells: formation of inclusion bodies in transfected cells that coexpress the nucleoprotein, the phosphoprotein, and the 22K protein. Virology. 1993 Jul;195(1):243–247. doi: 10.1006/viro.1993.1366. [DOI] [PubMed] [Google Scholar]
  16. Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene. 1989 Apr 15;77(1):51–59. doi: 10.1016/0378-1119(89)90358-2. [DOI] [PubMed] [Google Scholar]
  17. Homann H. E., Willenbrink W., Buchholz C. J., Neubert W. J. Sendai virus protein-protein interactions studied by a protein-blotting protein-overlay technique: mapping of domains on NP protein required for binding to P protein. J Virol. 1991 Mar;65(3):1304–1309. doi: 10.1128/jvi.65.3.1304-1309.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Horikami S. M., Curran J., Kolakofsky D., Moyer S. A. Complexes of Sendai virus NP-P and P-L proteins are required for defective interfering particle genome replication in vitro. J Virol. 1992 Aug;66(8):4901–4908. doi: 10.1128/jvi.66.8.4901-4908.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Huang Y. T., Collins P. L., Wertz G. W. Characterization of the 10 proteins of human respiratory syncytial virus: identification of a fourth envelope-associated protein. Virus Res. 1985 Mar;2(2):157–173. doi: 10.1016/0168-1702(85)90246-1. [DOI] [PubMed] [Google Scholar]
  20. Huang Y. T., Romito R. R., De B. P., Banerjee A. K. Characterization of the in vitro system for the synthesis of mRNA from human respiratory syncytial virus. Virology. 1993 Apr;193(2):862–867. doi: 10.1006/viro.1993.1195. [DOI] [PubMed] [Google Scholar]
  21. Huang Y. T., Wertz G. W. The genome of respiratory syncytial virus is a negative-stranded RNA that codes for at least seven mRNA species. J Virol. 1982 Jul;43(1):150–157. doi: 10.1128/jvi.43.1.150-157.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Huber M., Cattaneo R., Spielhofer P., Orvell C., Norrby E., Messerli M., Perriard J. C., Billeter M. A. Measles virus phosphoprotein retains the nucleocapsid protein in the cytoplasm. Virology. 1991 Nov;185(1):299–308. doi: 10.1016/0042-6822(91)90777-9. [DOI] [PubMed] [Google Scholar]
  23. Johnson P. R., Collins P. L. Sequence comparison of the phosphoprotein mRNAs of antigenic subgroups A and B of human respiratory syncytial virus identifies a highly divergent domain in the predicted protein. J Gen Virol. 1990 Feb;71(Pt 2):481–485. doi: 10.1099/0022-1317-71-2-481. [DOI] [PubMed] [Google Scholar]
  24. Johnson P. R., Collins P. L. The 1B (NS2), 1C (NS1) and N proteins of human respiratory syncytial virus (RSV) of antigenic subgroups A and B: sequence conservation and divergence within RSV genomic RNA. J Gen Virol. 1989 Jun;70(Pt 6):1539–1547. doi: 10.1099/0022-1317-70-6-1539. [DOI] [PubMed] [Google Scholar]
  25. La Ferla F. M., Peluso R. W. The 1:1 N-NS protein complex of vesicular stomatitis virus is essential for efficient genome replication. J Virol. 1989 Sep;63(9):3852–3857. doi: 10.1128/jvi.63.9.3852-3857.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. López J. A., Villanueva N., Melero J. A., Portela A. Nucleotide sequence of the fusion and phosphoprotein genes of human respiratory syncytial (RS) virus Long strain: evidence of subtype genetic heterogeneity. Virus Res. 1988 May;10(2-3):249–261. doi: 10.1016/0168-1702(88)90020-2. [DOI] [PubMed] [Google Scholar]
  27. Masters P. S., Banerjee A. K. Complex formation with vesicular stomatitis virus phosphoprotein NS prevents binding of nucleocapsid protein N to nonspecific RNA. J Virol. 1988 Aug;62(8):2658–2664. doi: 10.1128/jvi.62.8.2658-2664.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Mazumder B., Adhikary G., Barik S. Bacterial expression of human respiratory syncytial viral phosphoprotein P and identification of Ser237 as the site of phosphorylation by cellular casein kinase II. Virology. 1994 Nov 15;205(1):93–103. doi: 10.1006/viro.1994.1623. [DOI] [PubMed] [Google Scholar]
  29. Mazumder B., Barik S. Requirement of casein kinase II-mediated phosphorylation for the transcriptional activity of human respiratory syncytial viral phosphoprotein P: transdominant negative phenotype of phosphorylation-defective P mutants. Virology. 1994 Nov 15;205(1):104–111. doi: 10.1006/viro.1994.1624. [DOI] [PubMed] [Google Scholar]
  30. Mink M. A., Stec D. S., Collins P. L. Nucleotide sequences of the 3' leader and 5' trailer regions of human respiratory syncytial virus genomic RNA. Virology. 1991 Dec;185(2):615–624. doi: 10.1016/0042-6822(91)90532-g. [DOI] [PubMed] [Google Scholar]
  31. Morgan L. A., Routledge E. G., Willcocks M. M., Samson A. C., Scott R., Toms G. L. Strain variation of respiratory syncytial virus. J Gen Virol. 1987 Nov;68(Pt 11):2781–2788. doi: 10.1099/0022-1317-68-11-2781. [DOI] [PubMed] [Google Scholar]
  32. Norrby E., Marusyk H., Orvell C. Morphogenesis of respiratory syncytial virus in a green monkey kidney cell line (Vero). J Virol. 1970 Aug;6(2):237–242. doi: 10.1128/jvi.6.2.237-242.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Norrby E., Mufson M. A., Sheshberadaran H. Structural differences between subtype A and B strains of respiratory syncytial virus. J Gen Virol. 1986 Dec;67(Pt 12):2721–2729. doi: 10.1099/0022-1317-67-12-2721. [DOI] [PubMed] [Google Scholar]
  34. Orvell C., Norrby E., Mufson M. A. Preparation and characterization of monoclonal antibodies directed against five structural components of human respiratory syncytial virus subgroup B. J Gen Virol. 1987 Dec;68(Pt 12):3125–3135. doi: 10.1099/0022-1317-68-12-3125. [DOI] [PubMed] [Google Scholar]
  35. Ryan K. W., Kingsbury D. W. Carboxyl-terminal region of Sendai virus P protein is required for binding to viral nucleocapsids. Virology. 1988 Nov;167(1):106–112. doi: 10.1016/0042-6822(88)90059-1. [DOI] [PubMed] [Google Scholar]
  36. Ryan K. W., Morgan E. M., Portner A. Two noncontiguous regions of Sendai virus P protein combine to form a single nucleocapsid binding domain. Virology. 1991 Jan;180(1):126–134. doi: 10.1016/0042-6822(91)90016-5. [DOI] [PubMed] [Google Scholar]
  37. Ryan K. W., Portner A., Murti K. G. Antibodies to paramyxovirus nucleoproteins define regions important for immunogenicity and nucleocapsid assembly. Virology. 1993 Mar;193(1):376–384. doi: 10.1006/viro.1993.1134. [DOI] [PubMed] [Google Scholar]
  38. Ryan K. W., Portner A. Separate domains of Sendai virus P protein are required for binding to viral nucleocapsids. Virology. 1990 Feb;174(2):515–521. doi: 10.1016/0042-6822(90)90105-z. [DOI] [PubMed] [Google Scholar]
  39. Spehner D., Kirn A., Drillien R. Assembly of nucleocapsidlike structures in animal cells infected with a vaccinia virus recombinant encoding the measles virus nucleoprotein. J Virol. 1991 Nov;65(11):6296–6300. doi: 10.1128/jvi.65.11.6296-6300.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Takacs A. M., Das T., Banerjee A. K. Mapping of interacting domains between the nucleocapsid protein and the phosphoprotein of vesicular stomatitis virus by using a two-hybrid system. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):10375–10379. doi: 10.1073/pnas.90.21.10375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Yu Q., Hardy R. W., Wertz G. W. Functional cDNA clones of the human respiratory syncytial (RS) virus N, P, and L proteins support replication of RS virus genomic RNA analogs and define minimal trans-acting requirements for RNA replication. J Virol. 1995 Apr;69(4):2412–2419. doi: 10.1128/jvi.69.4.2412-2419.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES