Abstract
In this study, we investigated the role of the conserved neuraminidase (NA) cytoplasmic tail residues in influenza virus replication. Mutants of influenza A virus (A/WSN/33 [H1N1]) with deletions of the NA cytoplasmic tail region were generated by reverse genetics. The resulting viruses, designated NOTAIL, contain only the initiating methionine of the conserved six amino-terminal residues. The mutant viruses grew much less readily and produced smaller plaques than did the wild-type virus. Despite similar levels of NA cell surface expression by the NOTAIL mutants and wild-type virus, incorporation of mutant NA molecules into virions was decreased by 86%. This reduction resulted in less NA activity per virion, leading to the formation of large aggregates of progeny mutant virions on the surface of infected cells. A NOTAIL virus containing an additional mutation (Ser-12 to Pro) in the transmembrane domain incorporated three times more NA molecules into virions than did the NOTAIL parent but approximately half of the amount incorporated by the wild-type virus. However, aggregation of the progeny virions still occurred at the cell surface. All NOTAIL viruses were attenuated in mice. We conclude that the cytoplasmic tail of NA is not absolutely essential for virus replication but exerts important effects on the incorporation of NA into virions and thus on the aggregation and virulence of progeny virus. In addition, the relative abundance of long filamentous particles formed by the NOTAIL mutants, compared with the largely spherical wild-type particles, indicates a role for the NA cytoplasmic tail in virion morphogenesis.
Full Text
The Full Text of this article is available as a PDF (653.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Air G. M., Laver W. G. The neuraminidase of influenza virus. Proteins. 1989;6(4):341–356. doi: 10.1002/prot.340060402. [DOI] [PubMed] [Google Scholar]
- Bilsel P., Castrucci M. R., Kawaoka Y. Mutations in the cytoplasmic tail of influenza A virus neuraminidase affect incorporation into virions. J Virol. 1993 Nov;67(11):6762–6767. doi: 10.1128/jvi.67.11.6762-6767.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Castrucci M. R., Bilsel P., Kawaoka Y. Attenuation of influenza A virus by insertion of a foreign epitope into the neuraminidase. J Virol. 1992 Aug;66(8):4647–4653. doi: 10.1128/jvi.66.8.4647-4653.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Enami M., Luytjes W., Krystal M., Palese P. Introduction of site-specific mutations into the genome of influenza virus. Proc Natl Acad Sci U S A. 1990 May;87(10):3802–3805. doi: 10.1073/pnas.87.10.3802. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Enami M., Palese P. High-efficiency formation of influenza virus transfectants. J Virol. 1991 May;65(5):2711–2713. doi: 10.1128/jvi.65.5.2711-2713.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fujiyoshi Y., Kume N. P., Sakata K., Sato S. B. Fine structure of influenza A virus observed by electron cryo-microscopy. EMBO J. 1994 Jan 15;13(2):318–326. doi: 10.1002/j.1460-2075.1994.tb06264.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gaedigk-Nitschko K., Schlesinger M. J. Site-directed mutations in Sindbis virus E2 glycoprotein's cytoplasmic domain and the 6K protein lead to similar defects in virus assembly and budding. Virology. 1991 Jul;183(1):206–214. doi: 10.1016/0042-6822(91)90133-v. [DOI] [PubMed] [Google Scholar]
- García-Sastre A., Muster T., Barclay W. S., Percy N., Palese P. Use of a mammalian internal ribosomal entry site element for expression of a foreign protein by a transfectant influenza virus. J Virol. 1994 Oct;68(10):6254–6261. doi: 10.1128/jvi.68.10.6254-6261.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- García-Sastre A., Palese P. The cytoplasmic tail of the neuraminidase protein of influenza A virus does not play an important role in the packaging of this protein into viral envelopes. Virus Res. 1995 Jun;37(1):37–47. doi: 10.1016/0168-1702(95)00017-k. [DOI] [PubMed] [Google Scholar]
- Jin H., Leser G. P., Lamb R. A. The influenza virus hemagglutinin cytoplasmic tail is not essential for virus assembly or infectivity. EMBO J. 1994 Nov 15;13(22):5504–5515. doi: 10.1002/j.1460-2075.1994.tb06885.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lamb R. A., Choppin P. W. The gene structure and replication of influenza virus. Annu Rev Biochem. 1983;52:467–506. doi: 10.1146/annurev.bi.52.070183.002343. [DOI] [PubMed] [Google Scholar]
- Liu C., Air G. M. Selection and characterization of a neuraminidase-minus mutant of influenza virus and its rescue by cloned neuraminidase genes. Virology. 1993 May;194(1):403–407. doi: 10.1006/viro.1993.1276. [DOI] [PubMed] [Google Scholar]
- Liu C., Eichelberger M. C., Compans R. W., Air G. M. Influenza type A virus neuraminidase does not play a role in viral entry, replication, assembly, or budding. J Virol. 1995 Feb;69(2):1099–1106. doi: 10.1128/jvi.69.2.1099-1106.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miki T., Nishida Y., Hisajima H., Miyata T., Kumahara Y., Nerome K., Oya A., Fukui T., Ohtsuka E., Ikehara M. The complete nucleotide sequence of the influenza virus neuraminidase gene of A/NJ/8/76 strain and its evolution by segmental duplication and deletion. Mol Biol Med. 1983 Nov;1(4):401–413. [PubMed] [Google Scholar]
- Murti K. G., Bean W. J., Jr, Webster R. G. Helical ribonucleoproteins of influenza virus: an electron microscopic analysis. Virology. 1980 Jul 15;104(1):224–229. doi: 10.1016/0042-6822(80)90380-3. [DOI] [PubMed] [Google Scholar]
- Naim H. Y., Roth M. G. Basis for selective incorporation of glycoproteins into the influenza virus envelope. J Virol. 1993 Aug;67(8):4831–4841. doi: 10.1128/jvi.67.8.4831-4841.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Palese P., Tobita K., Ueda M., Compans R. W. Characterization of temperature sensitive influenza virus mutants defective in neuraminidase. Virology. 1974 Oct;61(2):397–410. doi: 10.1016/0042-6822(74)90276-1. [DOI] [PubMed] [Google Scholar]
- Parvin J. D., Palese P., Honda A., Ishihama A., Krystal M. Promoter analysis of influenza virus RNA polymerase. J Virol. 1989 Dec;63(12):5142–5152. doi: 10.1128/jvi.63.12.5142-5152.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Percy N., Barclay W. S., García-Sastre A., Palese P. Expression of a foreign protein by influenza A virus. J Virol. 1994 Jul;68(7):4486–4492. doi: 10.1128/jvi.68.7.4486-4492.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smirnov YuA, Kuznetsova M. A., Kaverin N. V. The genetic aspects of influenza virus filamentous particle formation. Arch Virol. 1991;118(3-4):279–284. doi: 10.1007/BF01314038. [DOI] [PubMed] [Google Scholar]
- Sugiura A., Ueda M. Neurovirulence of influenza virus in mice. I. Neurovirulence of recombinants between virulent and avirulent virus strains. Virology. 1980 Mar;101(2):440–449. doi: 10.1016/0042-6822(80)90457-2. [DOI] [PubMed] [Google Scholar]
- Warner T. G., O'Brien J. S. Synthesis of 2'-(4-methylumbelliferyl)-alpha-D-N-acetylneuraminic acid and detection of skin fibroblast neuraminidase in normal humans and in sialidosis. Biochemistry. 1979 Jun 26;18(13):2783–2787. doi: 10.1021/bi00580a014. [DOI] [PubMed] [Google Scholar]
- Whitt M. A., Chong L., Rose J. K. Glycoprotein cytoplasmic domain sequences required for rescue of a vesicular stomatitis virus glycoprotein mutant. J Virol. 1989 Sep;63(9):3569–3578. doi: 10.1128/jvi.63.9.3569-3578.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]