Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1996 Feb;70(2):905–914. doi: 10.1128/jvi.70.2.905-914.1996

Overexpression of the vaccinia virus A38L integral membrane protein promotes Ca2+ influx into infected cells.

C M Sanderson 1, J E Parkinson 1, M Hollinshead 1, G L Smith 1
PMCID: PMC189894  PMID: 8551630

Abstract

The vaccinia virus Western Reserve A38L protein is a hydrophobic integral membrane glycoprotein with amino acid similarity to mammalian integrin-associated protein. The protein has an N-terminal immunoglobulin superfamily domain, followed by five membrane-spanning domains and a short cytoplasmic tail. Deletion of the protein reduces virus plaque size but does not affect virus virulence (J. E. Parkinson, C. M. Sanderson, and G. L. Smith, Virology, in press). In this study, we have used a recombinant vaccinia virus in which the A38L gene may be inducibly overexpressed by addition of isopropyl-beta-D-thiogalactopyranoside (IPTG), to demonstrate that overexpression of the vaccinia virus A38L gene produces drastic changes in the morphology, permeability, and adhesion of infected cells. In particular, A38L overexpression caused swelling of cells, marginalization of nuclear chromatin, and vacuolization of the endoplasmic reticulum, features characteristic of cell necrosis. By 18 h postinfection, cells become permeable and lytic as defined by the free entry of propidium iodide and loss of the cytoplasmic enzyme lactate dehydrogenase. Chelation of extracellular Ca2+ 22 h postinfection inhibited further release of lactate dehydrogenase, showing that Ca2+ influx was required for A38L-induced lysis. Direct measurement of 45Ca2+ influx showed that the rate of Ca2+ uptake was directly related to the period of A38L induction. The A38L protein, therefore, promotes the formation of pores within the plasma membrane of cells, and these pores facilitate Ca2+ entry and induce necrosis. Addition of rifampin inhibited virus assembly but not the ability of A38L to induce necrosis, indicating that pore formation is independent of viral morphogenesis. Finally, overexpression of the A38L protein resulted in a reduced plaque size and a threefold decrease in production of infective particles in vitro. The A38L protein represents the first example of a virus protein which directly or indirectly promotes the influx of extracellular Ca2+.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aguado B., Selmes I. P., Smith G. L. Nucleotide sequence of 21.8 kbp of variola major virus strain Harvey and comparison with vaccinia virus. J Gen Virol. 1992 Nov;73(Pt 11):2887–2902. doi: 10.1099/0022-1317-73-11-2887. [DOI] [PubMed] [Google Scholar]
  2. Alcamí A., Smith G. L. A soluble receptor for interleukin-1 beta encoded by vaccinia virus: a novel mechanism of virus modulation of the host response to infection. Cell. 1992 Oct 2;71(1):153–167. doi: 10.1016/0092-8674(92)90274-g. [DOI] [PubMed] [Google Scholar]
  3. Brown E., Hooper L., Ho T., Gresham H. Integrin-associated protein: a 50-kD plasma membrane antigen physically and functionally associated with integrins. J Cell Biol. 1990 Dec;111(6 Pt 1):2785–2794. doi: 10.1083/jcb.111.6.2785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Burridge K., Fath K., Kelly T., Nuckolls G., Turner C. Focal adhesions: transmembrane junctions between the extracellular matrix and the cytoskeleton. Annu Rev Cell Biol. 1988;4:487–525. doi: 10.1146/annurev.cb.04.110188.002415. [DOI] [PubMed] [Google Scholar]
  5. Campbell I. G., Freemont P. S., Foulkes W., Trowsdale J. An ovarian tumor marker with homology to vaccinia virus contains an IgV-like region and multiple transmembrane domains. Cancer Res. 1992 Oct 1;52(19):5416–5420. [PubMed] [Google Scholar]
  6. Carrasco L., Esteban M. Modification of membrane permeability in vaccinia virus-infected cells. Virology. 1982 Feb;117(1):62–69. doi: 10.1016/0042-6822(82)90507-4. [DOI] [PubMed] [Google Scholar]
  7. Carrasco L. Membrane leakiness after viral infection and a new approach to the development of antiviral agents. Nature. 1978 Apr 20;272(5655):694–699. doi: 10.1038/272694a0. [DOI] [PubMed] [Google Scholar]
  8. Goebel S. J., Johnson G. P., Perkus M. E., Davis S. W., Winslow J. P., Paoletti E. The complete DNA sequence of vaccinia virus. Virology. 1990 Nov;179(1):247-66, 517-63. doi: 10.1016/0042-6822(90)90294-2. [DOI] [PubMed] [Google Scholar]
  9. Golstein P., Ojcius D. M., Young J. D. Cell death mechanisms and the immune system. Immunol Rev. 1991 Jun;121:29–65. doi: 10.1111/j.1600-065x.1991.tb00822.x. [DOI] [PubMed] [Google Scholar]
  10. Hiller G., Weber K., Schneider L., Parajsz C., Jungwirth C. Interaction of assembled progeny pox viruses with the cellular cytoskeleton. Virology. 1979 Oct 15;98(1):142–153. doi: 10.1016/0042-6822(79)90533-6. [DOI] [PubMed] [Google Scholar]
  11. Jones J., Hallett M. B., Morgan B. P. Reversible cell damage by T-cell perforins. Calcium influx and propidium iodide uptake into K562 cells in the absence of lysis. Biochem J. 1990 Apr 15;267(2):303–307. doi: 10.1042/bj2670303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lindberg F. P., Gresham H. D., Schwarz E., Brown E. J. Molecular cloning of integrin-associated protein: an immunoglobulin family member with multiple membrane-spanning domains implicated in alpha v beta 3-dependent ligand binding. J Cell Biol. 1993 Oct;123(2):485–496. doi: 10.1083/jcb.123.2.485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lindberg F. P., Lublin D. M., Telen M. J., Veile R. A., Miller Y. E., Donis-Keller H., Brown E. J. Rh-related antigen CD47 is the signal-transducer integrin-associated protein. J Biol Chem. 1994 Jan 21;269(3):1567–1570. [PubMed] [Google Scholar]
  14. Mason M. J., Garcia-Rodriguez C., Grinstein S. Coupling between intracellular Ca2+ stores and the Ca2+ permeability of the plasma membrane. Comparison of the effects of thapsigargin, 2,5-di-(tert-butyl)-1,4-hydroquinone, and cyclopiazonic acid in rat thymic lymphocytes. J Biol Chem. 1991 Nov 5;266(31):20856–20862. [PubMed] [Google Scholar]
  15. Mawby W. J., Holmes C. H., Anstee D. J., Spring F. A., Tanner M. J. Isolation and characterization of CD47 glycoprotein: a multispanning membrane protein which is the same as integrin-associated protein (IAP) and the ovarian tumour marker OA3. Biochem J. 1994 Dec 1;304(Pt 2):525–530. doi: 10.1042/bj3040525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Miller M. A., Cloyd M. W., Liebmann J., Rinaldo C. R., Jr, Islam K. R., Wang S. Z., Mietzner T. A., Montelaro R. C. Alterations in cell membrane permeability by the lentivirus lytic peptide (LLP-1) of HIV-1 transmembrane protein. Virology. 1993 Sep;196(1):89–100. doi: 10.1006/viro.1993.1457. [DOI] [PubMed] [Google Scholar]
  17. Morgan B. P. Complement membrane attack on nucleated cells: resistance, recovery and non-lethal effects. Biochem J. 1989 Nov 15;264(1):1–14. doi: 10.1042/bj2640001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Pinto L. H., Holsinger L. J., Lamb R. A. Influenza virus M2 protein has ion channel activity. Cell. 1992 May 1;69(3):517–528. doi: 10.1016/0092-8674(92)90452-i. [DOI] [PubMed] [Google Scholar]
  19. Rodriguez J. F., Smith G. L. Inducible gene expression from vaccinia virus vectors. Virology. 1990 Jul;177(1):239–250. doi: 10.1016/0042-6822(90)90477-9. [DOI] [PubMed] [Google Scholar]
  20. Rybak M. E., Renzulli L. A. Ligand inhibition of the platelet glycoprotein IIb-IIIa complex function as a calcium channel in liposomes. J Biol Chem. 1989 Sep 5;264(25):14617–14620. [PubMed] [Google Scholar]
  21. Schwartz M. A., Brown E. J., Fazeli B. A 50-kDa integrin-associated protein is required for integrin-regulated calcium entry in endothelial cells. J Biol Chem. 1993 Sep 25;268(27):19931–19934. [PubMed] [Google Scholar]
  22. Shchelkunov S. N., Blinov V. M., Resenchuk S. M., Totmenin A. V., Olenina L. V., Chirikova G. B., Sandakhchiev L. S. Analysis of the nucleotide sequence of 53 kbp from the right terminus of the genome of variola major virus strain India-1967. Virus Res. 1994 Dec;34(3):207–236. doi: 10.1016/0168-1702(94)90125-2. [DOI] [PubMed] [Google Scholar]
  23. Smith G. L., Chan Y. S., Howard S. T. Nucleotide sequence of 42 kbp of vaccinia virus strain WR from near the right inverted terminal repeat. J Gen Virol. 1991 Jun;72(Pt 6):1349–1376. doi: 10.1099/0022-1317-72-6-1349. [DOI] [PubMed] [Google Scholar]
  24. Sugrue R. J., Hay A. J. Structural characteristics of the M2 protein of influenza A viruses: evidence that it forms a tetrameric channel. Virology. 1991 Feb;180(2):617–624. doi: 10.1016/0042-6822(91)90075-M. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES